

-0.0

Système d'information dans le Cloud 16/11/2021

Large Synoptic Survey Telescope From Cloud-Native to Dark Energy

Fabrice Jammes

Scalable Data Systems Expert IN2P3 - Laboratoire de Physique de Clermont

Fritz Mueller

Technical manager SLAC National Accelerator Laboratory 1

Large Synoptic Survey Telescope

- The largest astronomical catalog
- Cloud-Native: Kubernetes
- Cloud-Native: Gitops & Cl
- 5

6

3

- **Cloud-Native: Kubernetes Operators**
- Cloud-Native: Storage management
 - Cloud-Native: Workflows

A project that makes you dream

A revolutionary telescope The largest digital camera in the world The largest celestial catalogs ever made

Funding ~\$1 billion, 20% dedicated to data management Key role of CNRS/IN2P3

Objective: Define the nature of dark energy

The largest astronomical catalog

LSST will produce a catalog of **40 billion galaxies and stars** and their associated physical properties, i.e. **500 PB** of data

Catalog (stars, galaxies, objects, sources,transients, exposures, etc.)

4

Data

Images Persisted: ~38 PB Temporary: ~½ EB

★ ~3 million "visits"
★ ~47 billion"objects"
★ ~9 trillion "detections"

- ★ Largest table: ~5 PB
- ★ Tallest table: ~50 trillion rows
- ★ Total (all data releases, compressed):
 ~83 PB

Ad-hoc user-generated data Rich provenance

QSERV The Petascale database

International context

The DAX team

Data Access and Database

- 🖈 🔹 Data and metadata
- ★ Images and databases
- ★ Persisting and querying
- \star For pipelines and users
- ★ Real time Alert Production and annual Data Release Production
- ★ For Archive Center and all Data Access Centers
- \star For USA, France and international partners
- \star Persisted and virtual data
- ★ Estimating, designing, prototyping, building, and productizing

Qserv design

~1000 workers, 20 chunks/5TB per workers

Highly automated deployment

Goals

In France CC-IN2P3 will analyze 50% of the data stream and provide access to the entire catalog

In the US Google hosts the Interim Data Facility

~1000 machines per database instance

Coordination of Rubin Observatory, IN2P3 and Google Kubernetes accepted by the project and validated for 20% of the target

Cloud-Native Kubernetes

All you really care about

Workload portability

Portability

Build your apps on-prem, lift-and-shift into cloud when you are ready

Before Kubernetes

~3 monthes to deploy Qserv inside a new cluster

<u>With Kubernetes</u> 5 minutes to 1 day

$\mathbf{\Theta}$	

Cloud-Native Gitops & Cl

Automated deployment: Cloud Native

CI Setup with KIND

For each commit	Kind-control-plane (master) kind-worker kind-worker2					
 Build Qserv image Start kind Start Qserv Launch integration tests Push image to registry 	Qserv Czar Qserv Worker 1 Container Runtime Container Runtime Qserv Worker 1 Container Runtime Container Runtime					
	Docker runtime					
	Github Action VM					

https://kind.sigs.k8s.io/

Wrapper for CI: https://github.com/k8s-school/kind-helper

CI in practice: Qserv integration tests

CI in practice: Qserv image scanning

Gitops: CI + IaC

Delegate access to infrastructure management Track who does what on infrastructure Recreate infrastructure from scratch Ease Kubernetes upgrade

Kubernetes is fully managed by Google Cloud / GKE

In practice

Merge pull request #270 from 1	Isst/tickets/DM-29567 QServ DE	V GKE #19	
∩ Summary	Triggered via push 6 months ago		
Jobs	🖗 dspeck1 pushed -o-fb0df7f master	Success	2m 3s
Terraform	qserv-dev-gke-tf.yaml on: push		
	Terraform 1m 50s		

Add five nodes to the GKE cluster Kubernetes will then allow to easily scale Qserv

Gitops: the Google Cloud Console

٢	Kubernetes Engine	← Clusters	🖍 EDIT	DELETE	+ ADD NODE POOL	+ DEPLOY	CONNECT DUPLICATE				
•	Clusters	📀 qserv-dev									
5	Workloads	DETAILS NODES STORAGE LOGS									
A	Services & Ingress	Node Pools									
	Applications										
⊞	ConfigMaps & Secrets	= Filter Filter node pools									
		Name 🛧	Status	Version	Number of nodes	Machine type	Image type	Autoscaling			
2	Storage	czar-pool-976f	🕑 Ok	1.21.5-gke.1302	1	n2-standard-32	Container-Optimized OS with Containerd (cos_containerd)	Off 💼			
1	Object Browser	utility-pool-7221	Ok	1.21.5-gke.1302	1	n2-standard-4	Container-Optimized OS with Containerd (cos_containerd)	Off 👕			
A	Migrate to containers	worker-pool-a64a	🕑 Ok	1.21.5-gke.1302	10	n2-standard-16	Container-Optimized OS with Containerd (cos_containerd)	off 👕			

Config Management

.....

Nodes

Filter Filter nodes

Name 🛧	Status	CPU requested	CPU allocatable	Memory requested	Memory allocatable	Storage requ
gke-qserv-dev-czar-pool-976f-80236054-7lb4	Ready	663 mCPU	31.85 CPU	503.32 MB	125.25 GB	
gke-qserv-dev-utility-pool-7221-c20d1f43-rdpx	Ready	303 mCPU	3.92 CPU	367 MB	13.94 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-117x	Ready	303 mCPU	15.89 CPU	367 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-55xm	Ready	303 mCPU	15.89 CPU	367 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-d9ug	Ready	303 mCPU	15.89 CPU	367 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-l1qm	Ready	563 mCPU	15.89 CPU	482.34 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-lv4s	🛇 Ready	303 mCPU	15.89 CPU	367 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-mwrj	🛇 Ready	323 mCPU	15.89 CPU	377.49 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-oq6x	Ready	313 mCPU	15.89 CPU	387.97 MB	61.5 GB	
gke-qserv-dev-worker-pool-a64a-01bc5238-qfvs	Ready	303 mCPU	15.89 CPU	367 MB	61.5 GB	

Cloud-Native Kubernetes operators

Operators embed ops knowledge from the experts

See

- https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
- https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

Credits: Daniel Messer Product Manager, OpenShift - Guilherme Barros Product Manager, Cloud BU

Config maps

How does an operator works?

Why should you use an operator?

Operators: both sysadmin + application experts

© Resize/Upgrade

Reconfigure

Backup

Healing SCHOOL https://www/k8s-school.fr

The Sysadmin

Types of operators

OperatorHub.io | The registry for Kubernetes Operators

Qserv is available on operatorHub

https://operatorhub.io/operator/gserv-operator

Cloud-Native Storage management

Qserv is deployed using StatefulSets

Goal: enable clustered software on Kubernetes

• Qserv, but also mysql, redis, zookeeper, ...

Clustered apps need "identity" and have sequencing constraints

- stable hostname, available in DNS
- an ordinal index
- stable storage: linked to the ordinal & hostname
- discovery of peers for quorum
- startup/teardown ordering

Storage management

GKE: Dynamic storage provisionning

User deploy Qserv instance

Create PVClaims

Google Storage creates automatically PersistentVolume+Google Disks (ssd+hdd)

On-premise:

Storage is manually declared to Kubernetes (via PV) and created

Cluster

Admin

User

PersistentVolumes PVClaim Pod

What we need to improve

Backup and restore Use Kubernetes standard API (i.e. VolumeSnapshots)? Use more advanced but non standard tools like Portworx, StorageOS, Longhorn?

Dynamic provisioning on-premise Looking at CNCF Landscape, but no standard solution yet

Objective: Use the very same procedures to manage the storage On-Premise and on Commercial Cloud Cloud-Native Workflows

A powerful data ingest workflow

Argo: screenshots

ION
ION

@	Workflows / default / qserv-ingest	-mdth4						WORK	FLOW DETAILS
v3.0.7		E LOGS							A B
Ξ	07:34	07:3	4	07:3	4 07:34	07:3	5 07:31	5 07:3	5
a	queue								
	register								
(' <u>A</u> ')	transactions								
,	check-transactions								
<i>"</i>	publish								
6	index-tables								
	validate								
	benchmark								
•									

Argo: screenshots

Public cloud: pros and cons

Pros

- ★ Flexibility (access, provisioning)
- ★ Excellent support
- ★ Low maintenance
- ★ Cool proprietary features

Cons

- \star Expensive / Cost difficult to manage
- ★ Vendor lock-in
- ★ Hide Kubernetes internals (black box)
- ★ Run slower than bare-metal (~25%)

Qserv is going on

- 2 Container orchestration helps a lot
- 3

Commercial cloud might be an alternative

Conclusion

Q&A

Fabrice JAMMES Laboratoire de Physique de Clermont

Fritz Mueller SLAC National Accelerator Laboratory

