

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Solving linear systems on IBM chips

Presented by Adrien Suau adrien.suau@cerfacs.fr CERFACS, LIRMM

Thesis supervisors

Aida Todri-Sanial

aida.todri@lirmm.fr LIRMM, CNRS

Eric Bourreau eric.bourreau@lirmm.fr LIRMM

Gabriel Staffelbach gabriel.staffelbach@cerfacs.fr CERFACS

Marko Rančić marko.rancic@total.com TOTAL

www.cerfacs.fr

- 1. Use cases at CERFACS and problems of interest
- 2. The HHL algorithm and the Hamiltonian Simulation problem
- 3. Variational Quantum Linear Solver (VQLS)
- 4. Application on IBM chips

Problems of interest

Problems targeted

Computational fluid dynamics:

Navier-Stokes equations

Wave equation:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \Delta u$$

Helmholtz equation:

$$\Delta f = -k^2 f$$

Problems of interest

Classes of problems

Partial differential equations

$$\frac{\partial^2 u}{\partial t^2} = c^2 \Delta u$$

Eigenvalue problems

$$\Delta f = -k^2 f$$

Sparse linear system solving (from PDE discretisation)

Problems of interest

What can be improved?

- Run-time
- Precision of final solution
- Size of solvable problem

HHL algorithm

First target: HHL algorithm

- Quantum algorithm to solve sparse linear systems
- ► Scales as log(N)
- Main goal: resources estimation of solving a PDE

Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. "Quantum Algorithm for Linear Systems of Equations". In: *Phys. Rev. Lett.* 103 (15 Oct. 2009), p. 150502. DOI: 10.1103/PhysRevLett.103.150502

HHL algorithm Hamiltonian Simulation

Product formula	Quantum walk	Taylor series
Linear	Trucated Dyson	Lieb-Robinson
combinations of	series	bounds
quantum walk		
Qubitization	Quantum Signal	Uniform Spectral
	Processing	Amplification

From linear systems to PDE

HHL not needed anymore

Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander. "Quantum algorithm for simulating the wave equation". In: *Phys. Rev. A* 99 (1 Jan. 2019), p. 012323. DOI: 10.1103/PhysRevA.99.012323

Questions:

- 1. Does it work?
- 2. Is it in agreement with theoretical complexity?
- 3. Is it practically interesting?

Implementation results

Answers from the implementation analysis:

- 1. Does it work? Yes
- 2. Is it in agreement with theoretical complexity? Yes
- 3. Is it practically interesting? Not yet, a lot of optimisation still required for it to be interesting

Adrien Suau, Gabriel Staffelbach, and Henri Calandra. "Practical Quantum Computing: Solving the Wave Equation Using a Quantum Approach". In: *ACM Transactions on Quantum Computing* 2.1 (Feb. 2021). ISSN: 2643-6809. DOI: 10.1145/3430030

Carlos Bravo-Prieto et al. Variational Quantum Linear Solver. 2020. arXiv: 1909.05820 [quant-ph]

Introduce a quantum variational algorithm to solve linear systems of equation.

Quantum Variational algorithms (QVA) Classical optimisation

Quantum Variational algorithms (QVA)

Bringing quantum to classical optimisation

Desirable properties

- More resilient to noise
- Only use short and small quantum circuits
- Usable on current Noisy Intermediate Scale Quantum (NISQ) chips

Drawbacks

- No rigorous bounds on run-time or precision
- Barren Plateaus

Barren Plateaus

(a) Cost function – no Barren plateau

(b) Cost function – Barren plateau

Coming back to VQLS

Running on real quantum chips

Important choices before running on quantum chips:

- 1. Which optimiser?
 - Gradient-free?
 - Gradient-based?
- 2. Parametrised circuit for state preparation

Sources of noise:

- 1. Statistical sampling $\approx \sqrt{8192}^{-1} \approx 10^{-2}$
- 2. Quantum noise:
 - Measurement errors $\approx 2 \times 10^{-2}$
 - Gate errors
 - 1-qubit gates $\approx 10^{-4}$
 - 2-qubit gates $\approx 10^{-2}$
 - Initial state preparation
 - Decoherence

Sources of errors:

- Qiskit compiler with optimisation at level 3
- $R_y R_z$ ansatz with linear entanglement

Solutions

- Using optimisation level 2 produce better circuits
- Using R_y ansatz
- Hardware-aware ansatz

Solving linear systems on IBM chips

March 4, 2021

Adrien Suau adrien.suau@cerfacs.fr CERFACS, LIRMM

https://adrien.suau.me

Any questions?