

Apporter de la confiance aux calculs en arithmétique virgule flottante

Jean-Michel Muller

CNRS - Laboratoire LIP Septembre 2024

<http://perso.ens-lyon.fr/jean-michel.muller/>

Floating-Point Arithmetic

- \bullet by far the most frequent solution for manipulating real numbers in computers;
- comes from the "scientific notation" used for 3 centuries by the scientific community;

Sometimes a bad reputation... for bad reasons:

- \bullet intrinsically approximate...
	- but most data is approximate;
	- but most numerical problems we deal with have no closed-form solution;
	- and in a subtle way (correct rounding), FP arithmetic is exact.
- part of the literature comes from times when it was poorly specified;
- \rightarrow too often, viewed as a mere set of cooking recipes.
- \bullet it is a well specified arithmetic, on which one can build trustable calculations;
- \bullet one can prove useful properties and build efficient algorithms on FP arithmetic;
- and yet the proofs are complex: formal proof is helpful.

Desirable properties of an arithmetic system

- Speed: tomorrow's weather must be computed in less than 24 hours;
- Reliability: all numerical computing is built upon basic arithmetic. If the arithmetic collapses, everything collapses;
- **•** Accuracy;
- Range: represent big and tiny numbers as well;
- Size: silicon area for hardware, memory consumption for software;
- **Power consumption;**
- Easiness of implementation and use: If a given arithmetic is too arcane, nobody will use it. . .

. . . of course, you can't win on all fronts.

Much change since the 70's and 80's: i) applications

Numerical simulation

- **•** trillions of operations
- crash? just start again the simulation (but not too often)
- **•** reproducibility may be useful.

Finance

Much change since the 70's and 80's: i) applications

Numerical simulation

- **•** trillions of operations
- **•** crash? just start again the simulation (but not too often)
- **•** reproducibility may be useful.

Finance

Embedded computing

- speed: yes, but no need to be faster than real time;
- \bullet crash? ahem...
- \rightarrow certified calculations.

Entertainment

- **•** Supermario's pizza: no need to carefully follow the laws of physics;
- **o** fluidity matters;
- **•** reproducibility: each player must see the same game landscape.

Artificial intelligence

• neural net training: huge amount of very low precision calculations.

Much change since the 70's and 80's: ii) performance

o the ratio

time to read/write in memory

time to perform $+$, \times , \div , $\sqrt{}$

has increased by a factor around 140 between 1986 and 2000;

- \bullet It has continued to increase after 2000, but at a somehow slower pace;
- the challenge is no longer to design fast arithmetic operators, but to be able to feed them with data at a very high rate;
- \rightarrow first consequence: many new architectural concepts (multiple levels of cache, pipelining, vector instructions, branch prediction);
- \rightarrow second consequence: incentive to use small formats whenever possible.

Much change since the 70's and 80's: iii) FP formats

single precision (a.k.a. binary32) double precision (a.k.a. binary64) [⇒]

8-bit emerging formats for IA BFloat16 binary16 binary32 binary64 binary128 (quad)

- Combinatorial explosion of all the possible arithmetic operators of the form Format $1 \times$ Format $2 \rightarrow$ Format 3
- Need to develop and maintain math function libraries for all these formats.

 $\sqrt{ }$ $\begin{matrix} \end{matrix}$

 $\overline{\mathcal{L}}$

Cleverly using these formats:

Numerical analysis, abstract interpretation, compilation, computer architecture, formal proof, ... 8

A few weird arithmetic things

- Excel'2007 (first releases), compute $65535 2^{-37}$, you get 100000 ;
- 2020: in a competition, robotic car crash due to bad handling of floating-point exception

if you have a Casio FX-92 pocket calculator, compute $11^6/13$, you will get

In binary, precision-p Floating-Point (FP) arithmetic, a number x is represented by two integers M (integral significand) and e (exponent):

$$
x=\left(\frac{M}{2^{p-1}}\right)\cdot 2^e=m_0.m_1m_2\cdots m_{p-1}\cdot 2^e
$$

where $M, e \in \mathbb{Z}$, with $|M| \leq 2^p - 1$ and $e_{\min} \leq e \leq e_{\max}$. Additional requirement: e smallest under these constraints.

- x is normal if $|x|\geq 2^{e_{\textsf{min}}}$ (implies $|M|\geq 2^{p-1}$, i.e., $m_0=1);$
- \bullet x is subnormal otherwise ($m_0 = 0$).

Subnormal numbers complicate the implementation of FP multiplication, but. . .

If a and b are FPN, $a \neq b$ equivalent to "computed $a - b \neq 0$ ".

Theorem 1 (Hauser)

If the absolute value of the sum/difference of two FP numbers is $\leq 2^{e_{\text{min}}+1}$ then it is a floating-point number (i.e., it is exactly representable in FP arithmetic).

Before 1985: a total mess. . .

Source: Kahan, Why do we need a Floating-Point Standard, 1981.

Before 1985: a total mess. . .

 \bullet Some Cray computers: overflow in FP \times detected just from the exponents of the entries, in parallel with the actual computation of the product;

 \rightarrow 1 * x could overflow:

- \bullet still on the Crays, only 12 bits of x were examined to detect a division by 0 when computing y/x
- \rightarrow if (x = 0) then z := 17.0 else z := y/x

could lead to zero divide error message. . . but since the multiplier too examined only 12 bits to decide if an operand is zero,

if $(1.0 * x = 0)$ then z := 17.0 else z := y/x

was just fine.

• many systems, not enough "guard bits" for $FP + \rightarrow$ for $x \approx 1$, experts knew that $(0.5 - x) + 0.5$ was much better than $1.0 - x$.

Writing reliable and portable numerical software was a challenge!

- \bullet put an end to a mess (no portability, variable quality);
- **•** leader: W. Kahan (father of the arithmetic of the HP35 and the Intel 8087);
- formats (in radices 2 and 10);
- **•** specification of operations and conversions;
- exception handling (max+1, 1/0, $\sqrt{-2}$, 0/0, etc.);
- successive versions of the standard: 2008, 2019, and 2029 is already in preparation.
- \bullet the sum, product, ... of two FP numbers is not, in general, a FP number \rightarrow must be rounded:
- the IEEE 754 Std for FP arithmetic specifies several rounding functions;
- \bullet the default function is RN ties to even.

Correctly rounded operation: returns what we would get by exact operation followed by rounding.

- correctly rounded $+$, $-$, \times , \div , $\sqrt{ }$ are required;
- \rightarrow when c = a + b appears in a program, we get $c = \text{RN}(a + b)$.
- \rightarrow somehow deterministic arithmetic (more later).

ulp (unit in the last place), u (unit round-off)

Binary, precision-p FP arithmetic.

- If $|x| \in [2^e, 2^{e+1})$, then $\text{ulp}(x) = 2^{\max\{e, e_{\min}\}-p+1}$.
	- Frequently used for expressing errors of atomic functions;
	- \bullet distance between consecutive FP numbers near x;

• if
$$
2^{e_{\text{min}}} \leq |x| \leq \Omega
$$
, then

$$
|x - RN(x)| \leq \frac{1}{2} \mathrm{ulp}(x) = 2^{\lfloor \log_2 |x| \rfloor - p},
$$

therefore,

$$
|x - RN(x)| \le u \cdot |x|, \tag{1}
$$

with $u = 2^{-p}$. Hence the relative error

$$
\frac{|x - RN(x)|}{|x|}
$$

(for $x \neq 0$) is $\leq u$.

 \bullet u, called unit round-off is frequently used for expressing relative errors.

Largest errors in ulps for double-precision calculation of some math functions. ulp (x) is the distance between two FP numbers in the neighborhood of x (so the largest values should be 0.5 – which is the case with $+$, $-$, \times , \div , and $\sqrt{$.

(Extracted from Gladman, Innocente, Mather, and Zimmermann, Accuracy of Mathematical

Functions. . . , Aug. 2024)

Exception handling: the show must go on...

- when an exception occurs: the computation must continue (default behaviour);
- \bullet two infinities and two zeros, with intuitive rules: 1/(+0) = + ∞ , $5 + (-\infty) = -\infty$...;
- and yet, something a little odd: $\sqrt{-0} = -0$;
- Not a Number (NaN): result of $\sqrt{-5}$, $(\pm 0)/(\pm 0)$, $(\pm \infty)/(\pm \infty)$, $(\pm 0) \times (\pm \infty)$, NaN +3, etc.

$$
f(x) = 3 + \frac{1}{x^5}
$$

will give the very accurate answer 3 for huge x , even if x^5 overflows.

One should be cautious: behavior of

$$
\frac{x^2}{\sqrt{x^3+1}}
$$

for large x .

With correct rounding and standardized exception handling, arithmetic is almost deterministic

- watch the dependency graph of operations (beware of "optimizing" compilers);
- \bullet watch the format of the implicit variables (such as the $x+y$ in $(x+y)*(z+t);$
- math functions still a problem unless you use a correctly rounded library such as Zimmermann & Sibidanov's Core Math, 1 or LLVM libc. 2

With enough care we can prove properties and build specific algorithms.

¹ <https://core-math.gitlabpages.inria.fr/> 2 <https://libc.llvm.org/>

Theorem 2 (Sterbenz)

Let a and b be positive FP numbers. If

$$
\frac{a}{2} \leq b \leq 2a
$$

then $a - b$ is a FP number $(\rightarrow$ computed exactly, whatever the rounding function).

Beware: the "2"s in the formula are not the radix. In radices 10, 16 or 42, the same property holds, still with $\frac{a}{2} \leq b \leq 2a$.

Example of use: implementation of trig. functions in precision-p FP arithmetic

- **•** cosine function: range reduction to small interval followed by polynomial approximation in that interval;
- range reduction: $x \to y = x k\pi$ such that $|y|$ is small. If done naively this is a very inaccurate operation.
- **•** assuming the largest value of k of interest fits in $m < p$ bits, express π as the sum of two FP numbers π_1 and π_2 such that
	- π_1 is closest to π among the FP numbers whose significand fits in $p - m$ bits;
	- $\bullet \pi_2 = \text{RN}(\pi \pi_1).$

Program: $y \leftarrow ((x - k * \pi_1) - k * \pi_2)$

By construction, $\Delta = k \times \pi_1$ is exact, and by Sterbenz Lemma, $x - \Delta$ is exact. (Cody-Waite range reduction. Many improvements are possible)

Lemma 3 Let a and b be two FP numbers. Let

 $s = RN(a + b)$ and $r = (a + b) - s$.

If no overflow when computing s, then r is a FP number.

Beware: does not always work with rounding functions \neq RN.

Theorem 4 (Fast2Sum (Dekker))

(only radix 2). Let a and b be FP numbers, s.t. $|a| > |b|$. Following algorithm: s and r such that

 $s + r = a + b$ exactly;

 \bullet s is "the" FP number that is closest to $a + b$;

Important remark: Proving the behavior of such algorithms requires use of the correct rounding property.

The TwoSum Algorithm (Moller-Knuth)

- \bullet no need to compare a and b;
- 6 operations instead of 3 yet, on many architectures, very cheap in front of wrong branch prediction penalty when comparing a and b;
- works in all bases.

Algorithm 2 (TwoSum)

$$
s \leftarrow RN(a+b)
$$
\n
$$
a' \leftarrow RN(s-b)
$$
\n
$$
b' \leftarrow RN(s-a')
$$
\n
$$
\delta_a \leftarrow RN(a-a')
$$
\n
$$
\delta_b \leftarrow RN(b-b')
$$
\n
$$
r \leftarrow RN(\delta_a + \delta_b)
$$

Knuth: if no underflow nor overflow occurs then $a + b = s + r$, and s is nearest $a + b$.

Boldo et al: formal proof $+$ underflow does not hinder the result (overflow does).

TwoSum is optimal (no way of always obtaining the same result with less than 6 \pm operations).

Naive algorithm:

$$
s \leftarrow x_1
$$

for $i = 2$ to *n* do

$$
s \leftarrow \text{RN}(s + x_i)
$$

end for
return *s*

Pichat, Ogita, Rump, and Oishi:

$$
s \leftarrow x_1
$$

\n
$$
e \leftarrow 0
$$

\nfor $i = 2$ to *n* do
\n
$$
(s, e_i) \leftarrow 2Sum(s, x_i)
$$

\n
$$
e \leftarrow \text{RN}(e + e_i)
$$

\nend for
\nreturn RN}(s + e)

Error bounds:

$$
(n-1) \cdot u \sum |x_i| \qquad u \left| \sum_{i=1}^n x_i \right| + \left(\frac{(n-1)u}{1-(n-1)u} \right)^2 \sum_{i=1}^n |x_i|
$$
\n(remember: $u = 2^{-p}$)

- \bullet If a and b are FP numbers, then (under mild conditions), $r = ab - RN(ab)$ is a FP number;
- We use the fused multiply-add (fma) instruction. It computes $RN(ab + c)$. First appeared in IBM RS6000, Intel/HP Itanium, PowerPC. . . Specified since 2008.
- obtained with algorithm TwoMultFMA $\begin{cases} p = R N(ab) \end{cases}$ $r = RN(ab - p)$

 \rightarrow 2 operations only, gives $p + r = ab$.

Just an example: $ad - bc$ with fused multiply-add

Kahan's algorithm for $x = ad - bc$:

```
\hat{w} \leftarrow \text{RN}(bc)e \leftarrow \mathsf{RN}(\hat{w} - bc)\hat{f} \leftarrow \text{RN} (ad - \hat{w})\hat{x} \leftarrow \text{RN}(\hat{f} + e)Return xˆ
```
• we have proven (2011):

 $|\hat{x} - x|$ < 2u|x|

"asymptotically optimal" error bound.

 $\bullet \rightarrow$ rotations, complex arithmetic.

Formal verification of FP algorithms

- starting point: the Pentium division bug (1994)
- J. Harrison formalized FP arithmetic in HOL Light, formally proved the division and sqrt algorithms of the Intel Itanium, and some elementary function algorithms (around 1999);
- D. Russinoff: similar things for AMD (more on the hardware side);
- **•** Sylvie Boldo and Guillaume Melquiond use the Coq proof assistant (Flocq library, Gappa tool).

Double-Word arithmetic

- Fast2Sum, 2Sum and 2MultFMA return their result as the unevaluated sum of two FP numbers.
- idea: manipulate such unevaluated sums to perform more accurate calculations in critical parts of a numerical program.
- \rightarrow "double word" or "double-double" arithmetic. Most recent avatar: Rump and Lange's "pair arithmetic" (2020).

Definition 5

A double-word (DW) number x is the unevaluated sum $x_h + x_\ell$ of two floating-point numbers x_h and x_ℓ such that

$$
x_h = \mathsf{RN}(x).
$$

Sum of two DW numbers. There exist a "quick & dirty" algorithm, but its relative error is unbounded.

DWPlusDW

1: $(s_h, s_f) \leftarrow 2Sum(x_h, y_h)$ 2: $(t_h, t_\ell) \leftarrow 2Sum(x_\ell, y_\ell)$ 3: $c \leftarrow \mathsf{RN}(s_{\ell} + t_h)$ 4: $(v_h, v_f) \leftarrow$ Fast2Sum (s_h, c) 5: $w \leftarrow \text{RN}(t_{\ell} + v_{\ell})$ 6: $(z_h, z_\ell) \leftarrow$ Fast2Sum (v_h, w) 7: return (z_h, z_ℓ)

We have (after a very long and tedious proof):

Theorem 6

If $p \geq 3$, the relative error of Algorithm DWPlusDW is bounded by

$$
\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots,
$$
 (2)

That theorem has an interesting history. . .

Tight and Riggman From Bounds for Basic Building Rhyle of Double-Word Arithmetic 15ree-7

ALGORITHM 6: - AccurateDWPInsDW(vs. vs. m. ns). Calculation of (vs. vs) + (m. ns) in hinary precision-e. floating-point arithmetic $1/(64, 67) \leftarrow 25 \text{nm} (m, m)$

 $(1, 1, 1) \leftarrow$ commute y_0)
2. $(t_0, t_1) \leftarrow 2Sum(x_f, y_f)$ $x_c \leftarrow RN(s_r + t_k)$ $(v_A, v_C) \leftarrow \text{Fast2Sum}(s_A, c)$ $s: w \leftarrow RN(v + vy)$ $s: (z_1, z_2) \leftarrow$ Fast2Sum(p., w) 7. return (x_1, x_2)

Li et al. (2000, 2002) claim that in binary64 arithmetic ($\rho = 53$) the relative error of Algorithm 6 is upper bounded by 2 - 2⁻¹⁰⁶. This bound is incor-

 $z^{p-1}x^{q-1}$ $z^{p-1}y^{q-1}y^{q-1}y^{q-1}z^{p-1}y^{q}$ nonzero. Notice that $1 \leq x_h$ that is asymptotically equivalent (as p goes to infini Now let us try to find a relative error bound. We are a.

THEOREM 3.1. If
$$
\rho \geq 3
$$
, then the relative error of Algorithm 6.

$$
\frac{3u^2}{2} = 3u^2 + 12u^3 + 48u^4 + \cdots
$$

 6.1

 $\overline{1-4n}$ which is less than $3u^2 + 13u^3$ as soon as $b \ge 6$

Note that the conditions on α ($\alpha > 3$ for the bound (3) to hold, $\alpha > 6$ for the simplified bound $3u^2 + 13u^3$) are satisfied in all practical cases.

PROOF. First, we exclude the straightforward case in misisk-ans of the operands is zero. We can also quickly proceed with the case $x_1 + u_1 = 0$: The returned result is $2\text{Sum}(x_2, u_2)$. which is could to $x + y$, that is, the computation is errorless. Now, without loss of generality, we assume $1 \leq x_k < 2, x \geq |y|$ (which implies $x_k \geq |y_k|$), and $x_k + \frac{1}{2}$ ponzero. Notice that $1 \leq x_k$. 2 implies $1 \le x_k \le 2 - 2u$, since x_k is a FP number.

Define e, as the error committed at Line 3 of the algorithm:

$$
c - (s_f + t_h)
$$

 (4)

 (5)

and ϵ_2 as the error committed at Line 5: $\epsilon_2 = w - (t_1 + v_2)$

$$
f_{\rm{max}}
$$

1. If $-x_h < y_h \le -x_h/2$. Sterbenz Lemma, applied to the first line of the algorithm, implies $s_k = x_h + y_h$, $s_\ell = 0$, and $c = RN(t_h) = t_h$.

Define

$$
\sigma = \left\{ \begin{array}{l} 2 \text{ if } y_h \leq -1, \\ 1 \text{ if } -1 < y_h \leq -x_h/2 \end{array} \right.
$$

APH Technology of Malegorical Column Md. 44 Me 3, Autob Harry Boldenburghts Catcher 2017

 $15\,\mathrm{meV}$

M. Indoke at all

We have $-x_0 < y_0 \le (1 - \sigma) + \frac{x_0}{2} (\sigma - 2)$, so $0 \le x_0 + y_0 \le 1 + \sigma \cdot (\frac{x_0}{2} - 1) \le 1 - \sigma u$. Also, since x_k is a multiple of 2*u* and u_k is a multiple of σu , $s_k = x_k + u_k$ is a multiple of σu . Since s_k is nonzero, we finally obtain

$$
\sigma u \le s_h \le 1 - \sigma u. \tag{6}
$$

We have lead if a and lead if the no

$$
|t_k| \leq \left(1+\frac{\sigma}{2}\right)u \quad \text{and} \quad |t_\ell| \leq u^2. \tag{7}
$$

From Equation (6), we deduce that the floating-point exponent of s_k is at least $-\rho + \sigma - 1$. From Fountion (2) the floating-point exponent of $c = t_1$ is at most $-a + a - 1$. Therefore, the Fast2Sum algorithm introduces no error at line 4 of the algorithm, which implies

$$
v_h + v_{\ell} = s_h + c = s_h + t_h = x + y - t_{\ell}.
$$

Equations (6) and (7) imply

$$
|s_k+r_h|\leq 1+\left(1-\frac{\sigma}{2}\right)u\leq 1+\frac{u}{2},
$$

so $|v_h| \le 1$ and $|v_\ell| \le \frac{n}{n}$. From the bounds on $|t_\ell|$ and $|v_\ell|$, we obtain:

$$
|\epsilon_2|\leq \frac{1}{2}\text{ulp}(t_\ell+v_\ell)\leq \frac{1}{2}\text{ulp}\left(u^2+\frac{u}{2}\right)=\frac{u^2}{2}\tag{8}
$$

$$
|\epsilon_2|\leq \frac{1}{2}\text{ulp}\left[\frac{1}{2}\text{ulp}(x_\ell+y_\ell)+\frac{1}{2}\text{ulp}\left((x+y)+\frac{1}{2}\text{ulp}(x_\ell+y_\ell)\right)\right]. \tag{9}
$$

Lemma 2.1 and $|s_h| \geq \sigma u$ imply that either $s_h + t_h = 0$, or $|v_h| = |\text{RN}(s_h + c)| = |\text{RN}(s_h + t_h)| \geq$ σu^2 . If $x_1 + t_2 = 0$, then $u_2 = u_2 = 0$ and the sequel of the proof is straightforward. Therefore, in the following, we assume $|v_k| > \sigma u^2$. Now.

- If $|v_k| = \sigma u^2$, then $|v_{\ell} + t_{\ell}| \le u|v_k| + u^2 = \sigma u^3 + u^2$, which implies $|w| = |RN(t_{\ell} + v_{\ell})| \le$ $\sigma u^2 = |v_h|;$
- If $|v_h| > \sigma u^2$, then, since v_h is a FP number, $|v_h|$ is larger than or equal to the FP number immediately above σu^2 , which is $\sigma (1 + 2u)u^2$. Hence $|v_h| \geq \sigma u^2/(1-u)$, so $|v_h| \geq u \cdot |v_h| +$ $\sigma u^2 \ge |v_2| + |t_2|$, So, $|w| = |RN(t_2 + v_2)| \le |v_3|$,

Therefore, in all cases. Bast2Sum introduces no error at line 6 of the algorithm, and we have

$$
z_k + z_{\ell} = v_k + w = x + y + \epsilon_2. \tag{10}
$$

Directly using Equation (10) and the bound $u^2/2$ on $|\epsilon_2|$ to get a relative error bound would result in a large bound, because $x + y$ may be small. However, when $x + y$ is very small, some simplification occurs thanks to Sterbenz Lemma. First, $x_k + u_k$ is a nonzero multiple of σu . Hence, since $|x_k +$ $|y_t| \le (1 + \frac{\sigma}{2})u$, we have $|x_t + y_t| \le \frac{3}{2}(x_h + y_h)$. Let us now consider the two possible cases:

• If $-\frac{3}{2}(x_0 + u_0) \leq x_2 + u_2 \leq -\frac{1}{2}(x_0 + u_0)$, which implies $-\frac{3}{2}x_0 \leq t_1 \leq -\frac{1}{2}x_0$, then Sterbenz lemma applies to the floating-point addition of s_h and $c = t_h$. Therefore line 4 of the algorithm results in $v_h = s_h$ and $v_\ell = 0$. An immediate consequence is $c_2 = 0$, so $z_h + z_\ell =$ $v_k + w = x + \psi$ the computation of $x + \psi$ is errorless;

ACM Transactions on Mathematical Software, Vol. 44, No. 2. Article 15pm, Publication date: October 2017.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:7

15res 8

33

M. Joldes et al.

Tight and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic 15res:9

• If $-\frac{1}{2}(x_1 + y_1) < x_2 + y_2 < \frac{3}{2}(x_1 + y_1)$, then $\frac{5}{2}(x_2 + y_2) < \frac{3}{2}(x_1 + y_1 + x_2 + y_2) = \frac{3}{2}(x + y)$. and $-\frac{1}{2}(x+y) < \frac{1}{2}(x+iy)$. Hence, $|x_i + iy| < |x + y|$, so $\text{ulp}(x + iy) \le \text{ulp}(x + y)$. Combined with Equation (9), this gives

$$
|\epsilon_2| \leq \frac{1}{2} \sup \left(\frac{3}{2} \sup (x+y) \right) \leq 2^{-p} \sup (x+y) \leq 2 \cdot 2^{-2p} \cdot (x+y)
$$

2. If $-r$, $/2 < n$, $< r$.

Notice that we have $x_1/2 < x_1 + y_1 < 2x_1$, so $x_1/2 < x_1 < 2x_1$. Also notice that me have $|v_2| < n$

• If $\frac{1}{2}$ < x_b + y_b \leq 2 - 4u. Define

We have

Elementary calculus shows that $f^{\frac{v}{s+m}}$ and algorithm.

When $\sigma = 1$, we i $x_h \leq 2 - 2u$ implies $|y_e|$ $(1 + \sigma/2)u$, therefore

 $\prod_{|t_0| \leq (1+\frac{6}{2})}$ bound (3) is probable.

 (14)

Now, $|s_t + t_h| \leq (1 + \sigma)u$, so

$$
|c| \le (1 + \sigma)u \quad \text{and} \quad |e_1| \le \sigma u^2. \tag{13}
$$

Since $s_h \geq 1/2$ and $|c| \leq 3u$, if $p \geq 3$, then Algorithm Fast2Sum introduces no error at line 4 of the algorithm, that is,

$$
v_h + v_\ell = s_h + c.
$$
 Therefore $|v_h + v_\ell| = |s_h + c| \le \sigma(1 - 2u) + (1 + \sigma)u \le \sigma$. This implies
$$
|v_h| \le \sigma \quad \text{and} \quad |v_\ell| \le \frac{\sigma}{\sigma}u.
$$

Thus $|t_{\ell} + v_{\ell}| \leq u^2 + \frac{\sigma}{2}u$, so

$$
|w| \le \frac{\sigma}{2}u + u^2 \quad \text{and} \quad |\varepsilon_2| \le \frac{\sigma}{2}u^2. \tag{15}
$$

From Equations (11) and (13), we deduce $s_k + c \geq \frac{\sigma}{2} - u(2\sigma + 1)$, so $|v_k| \geq \frac{\sigma}{2} - u(2\sigma + 1)$. If $p \geq 3$, then $|v_h| \geq |w|$, so Algorithm Fast2Sum introduces no error at line 6 of the algorithm, that is, $z_1 + z_2 = v_1 + w$. **Therefore**

$$
z_k+z_\ell=x+y+\eta,
$$

with $|n| = |\epsilon_1 + \epsilon_2| \leq \frac{3\epsilon}{2}u^2$. Since

$$
x+y\geq (x_h-u)+ (y_h-u/2)>\begin{cases} \frac{1}{2}-\frac{3}{2}u & \text{if} \quad \sigma=1,\\ 1-4u & \text{if} \quad \sigma=2, \end{cases}
$$

the relative error $|n|/(x + y)$ is upper bounded by

$$
\frac{3u^2}{1-4u}.
$$

ACM Transactions on Mathematical Software, Vol. 44, No. 2, Article 15nor, Buldication date: October 2017

15res: 10

M. Joldes et al.

• If $2 - 4u < x_1 + u_1 < 2x_1$, then $2 - 4u < x_1 < R N(2x_1) = 2x_1 < 4 - 4u$ and $|x_1| < 2u$. We have

 $t_1 + t_2 = x_1 + u_2$.

with $|x_t + u_t| \le 2u$, hence $|t_k| \le 2u$, and $|t_t| \le u^2$. Now, $|s_t + t_k| \le 4u$, so $|c| \le 4u$, and $|\epsilon_1| \leq 2u^2$. Since $s_k \geq 2-4u$ and $|c| \leq 4u$, if $\rho \geq 3$, then Algorithm Fast2Sum introduces no error at line 4 of the algorithm. Therefore.

$v_k + v_\ell = s_k + c \leq 4 - 4u + 4u = 4.$

so $v_k \leq 4$ and $|v_\ell| \leq 2u$. Thus, $|t_\ell + v_\ell| \leq 2u + u^2$. Hence, either $|t_\ell + v_\ell| < 2u$ and $|\epsilon_2| \leq$ $\frac{1}{2}$ uln(t_e + v_e) < u², or 2u < t_e + v_e < 2u + u², in which case $w = RN(t_0 + v_0) = 2u$ and $\leq u^2$. In all cases, $|e_2| \leq u^2$. Also, $s_h \geq 2-4u$ and $|c| \leq 4u$ imply $v_h \geq 2-8u$, and is gives

 $x_1 + x_2 = 0$, $+ w = x + u + n$.

. ith $|n| = |e_1 + e_2| \le 3u^2$. Since $x + y \ge (x_h - u) + (v_h - u) > 2 - 6u$, the relative error $|\eta|/(x + u)$ is upper bounded

 -64

The largest bound obtained in the various cases we have analyzed is

$$
\frac{3u^2}{1-4u}
$$

Elementary calculus shows that for $u \in V(0, 1/64]$ (i.e., $p \ge 6$) this is always less than $3u^2 + 13u^3$. \Box

The bound (3) is propably not optimal. The largest relative error we have obtain through many tests is around $2.25 \times 2^{-2p} = 2.25u^2$. An example is the input values given in Equation (2), for which, with $p = 53$ (binary64 arithmetic), we obtain a relative error equal to $2.24999999999999956... \times 2^{-106}$

So the theorem gives an error bound

$$
\frac{3u^2}{1-4u}\simeq 3u^2\ldots
$$

As said before, that theorem has an interesting history:

- the authors of the first paper where a bound was given (in 2000) claimed (without published proof) that the relative error was always $\leq 2u^2$ (in binary64 arithmetic);
- when trying (without success) to prove their bound, we found an example with error $\approx 2.25 u^2$;
- we finally proved the theorem, and Laurence Rideau (Inria Nice) started to write a formal proof in Coq;
- \bullet of course, that led to finding a (minor) flaw in our proof...

DW+DW: "accurate version"

- **•** fortunately the flaw was quickly corrected (before final publication of the paper. . . Phew)!
- still, the gap between worst case found $(\approx 2.25 \mu^2)$ and the bound $(\approx 3 \mu^2)$ was frustrating, so I spent months trying to improve the theorem...
- and of course this could not be done: it was the worst case that needed spending time!
- we finally found that with

 $x_h = 1$ $x_{\ell} = u - u^2$ $y_h = -\frac{1}{2} + \frac{u}{2}$ $y_R = \frac{2}{u^2} + u^3.$

error $\frac{3u^2-2u^3}{1+3u-3u^2+}$ $\frac{3u^2-2u^2}{1+3u-3u^2+2u^3}$ is attained. With $p=53$ (binary64 arithmetic), gives error 2.99999999999999877875 $\cdots \times u^2$.

- We suspect the initial authors hinted their claimed bound by performing zillions of random tests
- in this domain, the worst cases are extremely unlikely: you must build them. Almost impossible to find them by chance.

$DW \times DW$

- Product $z = (z_h, z_\ell)$ of two DW numbers $x = (x_h, x_\ell)$ and $y = (y_h, y_\ell)$;
- \bullet several algorithms \rightarrow tradeoff speed/accuracy. We just give one of them.

DWTimesDW

1: $(c_h, c_{l1}) \leftarrow 2Prod(x_h, y_h)$ 2: $t_\ell \leftarrow \text{RN}(x_h \cdot y_\ell)$ 3: $c_{\ell 2} \leftarrow \text{RN}(t_{\ell} + x_{\ell} v_h)$ 4: $c_{\ell 3} \leftarrow \text{RN}(c_{\ell 1} + c_{\ell 2})$ 5: $(z_h, z_{\ell}) \leftarrow$ Fast2Sum $(c_h, c_{\ell 3})$ 6: return (z_h, z_ℓ)

We have

Theorem 7 (Error bound for Algorithm DWTimesDW)

If $p \geq 5$, the relative error of Algorithm DWTimesDW2 is less than or equal to

 $5u^2$ $\frac{3u}{(1+u)^2} < 5u^2$.

and that theorem too has an interesting history!

- initial bound $6u^2$;
- again, we tried formal proof. . . and it turned out the proof was based on a wrong lemma.
- after a few nights of very bad sleep, we found a turn-around... that also improved the bound !
- no proof of asymptotic optimality, but in binary64 arithmetic, we have examples with error $>$ 4.98 u^2 ;
- (real consolation or lame excuse?) without the flaw, we would never have found the better bound;
- without the formal proof effort, the error would probably have remained unnoticed (in this case, without serious consequence since the property was true anyway, but. . .).
- (almost) fully specified arithmetic: one can prove properties of (small enough) programs, and build algorithms;
- ongoing effort for also standardizing a kernel of math functions (at least exp, sin, cos, log);
- all of numerical computing is built from computer arithmetic: it must be reliable;
- for some algorithms (e.g., DW arithmetic, FP division algorithms) the "paper proofs" are terrible: use of formal proof and computer algebra.