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Abstract

This doctoral thesis lies within the framework of astrodynamics. In particular, it deals with
mission design near libration point orbits. The starting point of the studies contained in the
present dissertation is dynamical systems theory, which provides an accurate description of the
dynamics governing libration regions. However, this work is aimed at real applications, and
therefore it makes use of this theoretical description as a means to provide solutions to problems
that have been identified in mission design.

The restricted three body problem (RTBP) is a well known model to study the motion of
an infinitesimal mass under the gravitational attraction of two massive bodies. Its 5 equilibrium
points have been thoroughly studied since the last century. The results contained in the present
dissertation refer to two of these equilibrium points: L1 and L2, which lie on both sides of the
smallest of the massive bodies of the system and are the ones on which more practical interest
has been focused in the last decades ( for missions such as SOHO, Genesis, Hershel-Planck. . . ).
Instability is a basic property of the aforementioned equilibrium points, which is inherited by the
orbits surrounding them and accounts for the existence of stable and unstable directions at each
point of these orbits. The union of these directions or, more precisely, of the asymptotic orbits
arising from the periodic and quasi-periodic motions around L1 and L2, forms an invariant object
either approaching (stable directions) or leaving (unstable directions) the vicinity of libration
points. These invariant objects are the hyperbolic manifolds of libration point orbits. A proper
knowledge and description of such manifolds is extremely useful for mission design, as they are
the key to understanding the dynamics of the system.

The first problem that has been tackled in our work is the eclipse avoidance in Lissajous
orbits. Generically, a spatial probe placed in an orbit around the solar libration point L2 is
affected by occultations due to the shadow of the Earth, unless eclipse avoidance maneuvers are
planned. If the orbit surrounds L1, eclipses due to the strong solar electromagnetic influence
occur. On the other hand, Lissajous-type orbits are a kind of libration motion resulting from the
combination of two perpendicular oscillations. Their main advantage over other kinds of orbits,
such as the elongated Halo orbits, is that the amplitudes of each one of the oscillations can be
chosen independently, and this fact makes them suitable for certain mission requirements. This
work uses the linear approximation to the analytical description of Lissajous orbits in order to
compute the so-called non escape direction which allows for transfers between different orbits
by changing either the amplitudes or the phases (or both at the same time) while avoiding the
unstable part of the movement.

Furthermore, another interesting problem in space mission design is the rendez-vous, under-
stood in our work as the strategy to make two different satellites meet at a certain orbit or to
approach each other to a given small distance. The tools developed for eclipse avoidance in Lis-
sajous orbits also allow us to plan simple rendez-vous strategies, which can be used either for
preliminary mission analysis or as a contingency plan.

On the other hand, there exist low cost channels between the libration points L1 and L2 of a
given system, like the ones used in the Genesis mission. These channels provide a natural way of
transfering between the libration regions and they can be found by intersecting stable and unstable
manifolds of orbits around L1 and L2. Remember that stable manifolds tend to an invariant object
in forwards time. Unstable manifolds do so backwards in time. Therefore, when an intersection
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is found between a stable manifold and an unstable one, it provides a path that goes away from a
libration orbit and approaches another one. Connections between planar Lyapunov orbits, which
are planar periodic motions around L1 and L2 are studied in this dissertation, being specifically
computed for the Sun-Earth and Earth-Moon systems.

Moreover, the idea of intersecting stable and unstable manifolds in order to find low cost
connecting trajectories can also be applied in the search for low cost paths from the lunar libration
regions to the solar libration orbits. It is well known that the stable manifolds of orbits around
libration points of the Earth-Moon problem do not come close enough to the Earth as to provide
a direct transfer to the Moon. On the contrary, stable and unstable manifolds of some libration
orbits around L2 in the Sun-Earth problem do come to a close approach with the Earth. Therefore,
if a natural path between the solar libration orbits and the lunar ones could be found, this would
result in a cheap way of reaching the Moon. And the other way round, a path from the lunar
libration regions to the solar ones would allow for the placement of a gateway station at the
vicinity of a lunar libration point aimed at providing services to solar libration missions, for
instance. This is the idea that drives the last part of the dissertation. With the goal of joining
the lunar libration orbits and the solar ones by using invariant manifolds, the four body problem
Sun-Earth-Moon- spacecraft is decoupled in two restricted three body problems. Then, we can
search for intersections between manifolds of libration orbits belonging to both problems. At first,
connecting trajectories from the planar Lyapunov orbits around L2 in the Earth-Moon system
to planar Lyapunov orbits around the solar L2 point are computed. Afterwards, the search is
conducted in the 3-dimensional case, between Lissajous type orbits around the aforementioned
libration points of both problems. The computation of connecting trajectories in the spatial case
is much more complicated, as the dimension of the state space in which we look for intersections
increases with respect to the planar case. However, a method for finding and classifying such
trajectories is detailed in this work. Furthermore, realistic JPL ephemeris trajectories are obtained
by means of a multiple shooting procedure applied on the connecting trajectories found in the
coupled RTBPs model. Finally, a method for refining the aforementioned trajectories in JPL
coordinates to zero cost connecting trajectories, when possible, is presented and provides free
realistic transfers from Earth-Moon to Sun-Earth which are ready to be used in mission design.
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posat a la meva disposició, sobretot el cluster d’ordinadors Eixam, sense els quals la realització
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Preface

This doctoral dissertation is structured in chapters. The first and second chapters provide a
general insight into the Restricted Three Body Problem, the libration point orbits, as well as the
state of the art in several aspects of mission design near libration points. These initial chapters are
aimed at motivating the working topics contained in the present dissertation, while introducing
concepts and relevant references to previous works. Thus, they do not contain new results.

The new contributions of the thesis are contained in chapters 3, 4 and 5.
Chapter 3 deals with non-escape maneuvers in Lissajous type orbits. A strategy for eclipse

avoidance, a method for transferring between different Lissajous orbits and a rendez-vous method-
ology are presented using this kind of impulsive maneuvers.

In chapter 4, a complete methodology for the computation of connecting trajectories between
planar periodic orbits around L1 and L2 libration points of a given RTBP is presented. This
methodology is applied to the Sun-Earth and Earth-Moon RTBPs and the resulting families of
connecting trajectories are included in the final part of the aforementioned chapter.

Moreover, in chapter 5 similar ideas as in chapter 4 are applied in the search for connecting
trajectories, but for joining libration regions belonging to two different problems: Sun-Earth and
Earth-Moon. In particular, trajectories between planar Lyapunov orbits of the solar and lunar
libration regions are computed in the first part of the chapter. In the second part of it, a method
for computing connecting trajectories between Lissajous orbits belonging to the aforementioned
problems is introduced. A database containing a sample of these connecting trajectories in the
coupled RTBPs is attached to the dissertation in the form of a DVD. In the last part of the
chapter, a methodology which has been developed in order to refine the connecting trajectories
between Lissajous orbits to realistic JPL ephemeris coordinates, as well as slowly reducing the
maneuver in the coupling point until zero cost transfers are obtained, is presented.

The dissertation ends by pointing at some possible directions for future work.
Finally, two appendices are added to the present work. Appendix A contains information

on how to use the database of the attached DVD. Appendix B contains the translation of the
abstract to Catalan.
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Chapter 1

Motivation and State of the Art

In the last 25 years, we have attended the breakthrough of the use of libration orbits in space
mission design. Nowadays, anyone involved in space related topics is, at least, familiar with the
words Lagrange point orbit or libration region. We even dare to affirm that the vast majority of
mission analysts would be able to list some past, present or future missions having such orbits as
nominal paths.

In 1978, the ISEE-3 (the third Sun-Earth explorer spacecraft) was launched to pursue studies
of the Sun-Earth interactions in a first step of what is now known as Space Weather. After a direct
transfer to the vicinity of the Sun-Earth L1 Lagrange point, ISEE-3 was inserted into a nearly
periodic halo orbit. When some revolutions were completed in this location, the spacecraft visited
the vicinity of L2 point to study the magneto tail of the Earth. Finally, and after making use
of a double lunar swing-by the spacecraft was renamed as the International Cometary Explorer
(ICE) and had a close encounter with comet Giacobini-Zinner ([67], [18]). This early libration
mission is already an example of the huge advantages that dynamical systems theory applied to
libration regions provide for space exploration ([73], [21], [41]): adaptability, sophistication and
fuel budget savings. Consequently, interest in the Lagrange libration points has continued to
increase and to provide more challenging scientific applications, partly reflected in missions such
as the well known SOHO ([11], [37]) or Genesis ( [42], [3]).

In short, libration points, also known as Lagrange points, are the equilibrium solutions of
the Restricted Three Body Problem (RTBP), which is a model for the motion of a particle of
very small mass under the gravitational attraction of two massive bodies (primaries) that follow
Keplerian orbits around their centre of masses. For space missions, the particle is the spacecraft
and the two big masses can be either the Sun and a planet or the Earth and the Moon, for
instance1. There exist 5 equilibrium solutions to the system of differential equations of motion of
the RTBP, which are called Li, with i from 1 to 5. Up to now, practical interest has been mainly
focused on L1 and L2, which are the ones closest to the small primary ([12], [32]).

The object of this chapter is to provide an insight into the characteristics of the L1 and L2

regions, which make them suitable for space exploration, as well as into mission analysis topics and
problems arising in the aforementioned regions. Furthermore, some relevant studies or techniques
that have been developed to tackle these problems will also be mentioned. In this way, we will
be ready to motivate and understand the different parts that the present dissertation deals with.

1This model will be technically described in chapter 2.
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Chapter 1 Motivation and State of the art 2

Note on the bibliography and references

Phase Topic References

Transfer to libration regions

From Earth to libration regions [23], [43], [7], [82], [75], [84]
Transfers between libration orbits [24], [40], [56]
Low-thrust, ballistic captures [77], [2], [51], [59], [80]

In the vicinity of libration points

Dynamical description, orbit types
[30], [48], [64], [35], [36], [85]

[81], [5], [60], [38], [4]
Station keeping strategies [15], [31], [45], [6]
Eclipse avoidance [8], [62], [39]

Beyond libration regions

4-body models [22], [17], [83]. [68]
Interplanetary travel [55], [74], [19]
Gateway lunar station [52], [54]

Table 1.1: Some references concerning different stages of mission design near libration points

A large amount of researchers, university groups and space related scientists have carried
out studies concerning the description of the vicinity of the points L1 and L2 and their possible
uses in mission design. These studies range from the pure analytical description to the precise
numerical implementation. It is not the object of this section to provide an exhaustive collection
of bibliography, but to set a general frame of reference in order to be able to introduce the work
developed in this doctoral dissertation in a natural and understandable way. To this aim, some
references are included in table 1, covering several aspects of libration orbit mission design.

In addition to these references concerning particular topics, it is worth mentioning here the
works which have been used as basic references. First of all, the works by H. Poincaré and V.
Szebehely ([63], [81]) laid down the basis on which to start constructing a dynamical systems
study of the libration regions of the Restricted Three Body problem. Furthermore, the work
summarised in [32], [33] and [34], among others by the same group of researchers, combines
rigorous analytical studies and efficient numerical implementations for a wide range of problems
arising in libration regions and it has to be regarded as an essential tool for understanding the
present dissertation. Finally, valuable help on numerical computations can be found, for instance,
in [71], [79] and [72].

Characteristics and applications of libration regions

Which are the reasons for the aforementioned suitability of solar libration regions for mission
design purposes?

First of all, solar libration regions are easy and inexpensive to reach from Earth. In the
restricted three body problem, there are always manifolds approaching the smallest of the pri-
maries. Therefore, for the Sun-Earth case, some manifolds can give a ride to the spacecrafts
from a parking LEO orbit to the desired libration motion ([57]). Moreover, once in the libration
regions, a good observation site of the Sun and other celestial bodies and space objects is pro-
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vided ([14], [10]). The Earth-Sun-libration point relative geometry is almost constant, due to the
fact that the libration points rotate with the Sun-Earth axis. In addition, the communication
system design is simple and cheap (as long as eclipses are avoided), due to this overall constant
geometry and the proximity between the Earth and L1 and L2. On the other hand, the thermal
stability existing in the libration regions, specially around L2, makes them the perfect locations
for non-cryogenic missions and highly precise visible light telescopes.

Lunar libration regions have also received some attention in the last decades and are nowadays
starting to be considered in spatial mission design, even for manned spacecraft. The lunar L2

point was proposed, for instance, to hold a constant communication link between the Earth and
the hidden part of the Moon ( [6], [15]). Moreover, lunar regions can provide ballistic low cost
captures such as the one used for the Japanese Hiten mission ([1]).

Finally, an ambitious idea, which foresees a net of low cost paths between any pair of given
locations in the solar system was born some years ago. These paths would be computed using the
invariant manifolds of libration orbits of different restricted three body problems, and intersecting
them in an adequate way. Cheap trajectories from the Earth and return, and between L1 and L2

were studied for missions such as Genesis ([53]). The idea is to extend the asymptotic connections
existing in the 3-body problems to different n-body problems, obtained by coupling RTBPs. Some
studies have already been performed for the Sun-Earth-Moon-spacecraft 4 body problem and for
tours of the Jupiter moons (JIMO). However, this is a field to which lots of efforts are bound to
be devoted in the years to come.

Some mission design aspects

The first question that one has to solve when trying to design a libration point missions is how
to get to the libration orbit. Transfers from Low Earth Orbits to the corresponding libration
region have to be planned taking into account the capabilities of current launchers. There are
two different approaches to the transfer problem: direct shooting methods and invariant manifolds
methods. The first one, direct shooting, uses forward and backward propagators (from the origin
and arriving orbit respectively) and tries to match the obtained trajectories in such a way that they
satisfy given boundary conditions and/or minimise the total fuel. Invariant manifold techniques,
on the other hand, take advantage of the hyperbolic character of the libration orbits and of
the fact that solar libration manifolds approach the Earth, in order to plan cheap and close to
natural transfers. A generalisation of the stable manifold of the desired arriving orbit can be
taken and the intersecting points of this generalisation and the LEO orbit can be computed. At
each point, a ∆v will be needed for the matching in position and velocities. This ∆v mainly
depends on the base point of the nominal libration orbit from which the trajectory arises and
can be therefore minimised by moving this point. Note that for the return trajectories, the same
techniques can be used just by switching from stable to unstable manifolds, or from forward to
backward propagators. For the lunar libration regions, however, a direct transfer from the Earth
using invariant manifolds is not possible, as the manifolds of the Earth-Moon problem do not
approach the Earth. Therefore, for these cases other techniques have to be planned, such as the
composition of the use of solar libration points as steps on the way (Shoot the Moon, [52]) or lunar
ballistic captures ([2]). In any case, transfer strategies should also be accompanied by trajectory
correcting maneuvers, aimed at correcting the drifts caused by inaccuracies in the injection phase
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([29]).
Once in the libration region, the transfer problem may not be completely solved. For instance,

if the suitable stable manifold providing the transfer from the Earth to the libration region does
not belong to the final nominal orbit. For these cases, transfers between different libration orbits
have been thoroughly studied ([28], [40], [75]). In addition, another related problem is travelling
from one libration point to the other one. In this direction, studies concerning the so-called
heteroclinic connections, which act as natural channels between different libration regions, have
been developed ([27]).

There is still something else to be taken into account concerning the injection of the space
probe in the nominal trajectory: the point in the orbit where we actually want to insert the
satellite. A similar problem, for missions using more than one satellite, consists of making the
satellites meet or adopt a particular relative geometry at a given point of the orbit. This can
be summarised as the rendez-vous problem ([46], [58]). Two different ways of looking at the
rendez-vous problem could be from the Earth, planning the launches and intermediate trajectory
maneuvers so as to make the satellites reach the orbit at similar points and times, or from the
libration orbit, letting the satellites reach the orbit independently and then planning maneuvers
to make them approach each other. The second approach can also be used as contingency plan,
when the launches aimed at making the satellites be injected close to each other fail in some way.

Furthermore, if one knows how to reach the desired orbit and even travel from one libration
orbit to the other one, it is the time to worry about how close to the nominal orbit the spacecraft
will stay. Several perturbations, due to the hyperbolic character of libration regions and other
perturbing forces, will cause the actual trajectory to deviate from the nominal path. For this
reason, station keeping strategies have to be planned. Different approaches have been used to
plan station keeping maneuvers ([31], [70]). We can cite for instance the so-called Target mode
approach, which is aimed at planning maneuvers which minimise the weighted deviations at some
given future positions, or the Floquet mode approach, which makes use of the knowledge of the
hyperbolic unstable terms, responsible for the short term drifts from the nominal orbit, in order
to plan maneuvers which reduce these instabilities to zero.

Libration regions may well be adequate locations for space probes, but there is still an im-
portant handicap which has to be dealt with, which are eclipses. These phenomena, understood
for instance as regions where the spacecraft suffers from an occultation which either interrupts
its power source or its availability to communicate with the ground station, have to be avoided.
Passive eclipse avoidance strategies consist of using orbits which do not suffer from eclipses which
can affect the mission performance (either big orbits which do not cross the eclipse zone, such as
halo orbits or short mission lifetimes and adequate injection conditions which allow for the mis-
sion to be finished when the first eclipse occurs. . . ). On the other hand, active eclipse avoidance
strategies taking advantage of the orbital characteristics can also be planned ([62], [8]).
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Motivation and short presentation of the dissertation parts

A summary of some relevant works and mission design concepts for libration regions has been
presented in the above sections. In this context, the work contained in the present doctoral
dissertation can be roughly divided in three parts, each one dealing with a particular problem of
libration mission design and using slightly different dynamical systems ideas and techniques.

The first part is motivated by the eclipse avoidance problem in libration regions. Traditionally,
big Halo orbits which don’t cross the exclusion zone have been used as nominal paths in order
to avoid the problem of occultations (in solar L2) or excessive electromagnetic flow (in solar L1).
However, the in plane and out of plane amplitudes of a Halo orbit have to satisfy a stiff relation,
which may not be always desirable or adequate for mission purposes. On the contrary, Lissajous
libration point orbits are quasi periodic motions which allow for a high degree of freedom in their
amplitude choice. Nevertheless, Lissajous orbits usually cross the exclusion zone if no maneuvers
are planned. To this aim, a design tool called Effective Phases Plane (EPP), which is useful for
describing the motion on Lissajous orbits and also proves to be a useful tool for mission design,
has been developed. In fact, not only does the EPP provide a simple geometrical solution to
the eclipse avoidance problem, but it also has a straightforward application to the rendez-vous
problem.

Secondly, a study of homoclinic and heteroclinic connections between planar Lyapunov orbits
in the Sun-Earth and Earth-Moon problems is presented. These connections provide cheap chan-
nels between L1 and L2 regions, which can be used for cost effective transportation in libration
regions. Moreover, they can be found by intersecting hyperbolic invariant manifolds of different
orbits (one stable manifold integrated backwards with an unstable manifold integrated forwards).
The analytic approximations taken for the Lyapunov orbits and manifolds in this case contain
high order terms, assuring a precise description of the libration region dynamics in the frame
of the restricted three body problems involved. Furthermore, the numerical tools developed for
this part of the work were also used in the studies that followed, concerning transfers between
different RTBPs coupled in an adequate way.

Finally, the last chapter of the present doctoral dissertation is devoted to finding connecting
trajectories between the solar and the lunar L2 libration regions. This work is both a generalisation
of the aforementioned search for asymptotic homoclinic and heteroclinic trajectories and a first
step in the construction of a net of low cost paths in the Solar System. Furthermore, being able to
join the solar and lunar libration regions is a very important fact which is bound to be essential in
the future plans for human lunar exploration. For instance, a gateway station could be placed in
a lunar libration region in order to provide services to solar libration point missions. On the other
hand, these solar-lunar connections can also be simply regarded as a cheap means of reaching the
Moon using invariant manifolds. Studies of possible transfer trajectories from the L2 region of the
Earth-Moon system to the L2 region of the Sun-Earth region have been performed by coupling
the Sun Earth and Earth Moon RTBPs in two different cases: using the planar RTBPs, transfer
trajectories between planar Lyapunov orbits around both problems have been found; on the other
hand, using the 3 dimensional RTBPs, transfer trajectories between Lissajous orbits have been
studied. Moreover, the last part of the dissertation deals with the refinement of these coupled
RTBP trajectories to realistic models of motion (JPL ephemeris).





Chapter 2

Introduction

2.1 The restricted three body problem

Consider the motion of an infinitesimal particle, m, under the gravitational attraction of two
point like big masses, called primaries: m1 and m2. In our work, the infinitesimal particle (m)
will be a spacecraft affected by the Sun and a planet or by the Earth and the Moon, which
are the so called primaries (m1 and m2). Let the attraction of the infinitesimal particle on the
primaries be neglected, so the primaries describe Keplerian orbits around their common centre of
mass. The study of the motion of m under the gravitational effects of the primaries is known as
restricted three body problem or RTBP. Moreover, we assume that the primaries are moving in
circles around their centre of mass. Therefore, the model we use is the Circular Restricted Three
Body Problem (CRTBP). The word circular, however, is often omitted.

For the sake of simplicity, let us take units of mass, length and time such that the sum of the
masses of the primaries, the gravitational constant and the period of the primaries is equal to 1,
1 and 2π respectively. With these units, the distance between the primaries is also 1. We denote
by µ the mass of the smallest primary, and therefore, 1−µ stands for the mass of the big one.

Furthermore, the use of a synodic or non-inertial coordinate system, centred at the centre of
mass of the primaries and rotating along with the axis joining them is convenient, and frequently
found in the literature ([81], [61]). The orientation of this axis, the x axis, is given by the direction
that goes from the smallest to the biggest primary. The z axis has the direction given by the
angular motion of the primaries and, finally, the y axis is chosen orthogonal to the previous ones
to have a positively oriented coordinate system. The convenience of this reference frame becomes
clear when one realizes that the primaries remain fixed for all times, t. The small primary of
mass µ is located at (µ− 1, 0, 0) and the primary of mass 1 − µ at (µ, 0, 0).

The equations of motion of the third particle in the RTBP, using Newton’s laws and the
coordinates and units explained above are (see [81]),

Ẍ − 2 Ẏ = ∂Ω
∂X

Ÿ + 2 Ẋ = ∂Ω
∂Y

Z̈ = ∂Ω
∂Z







(2.1)

where Ω(X, Y, Z) = 1
2
(X2 + Y 2) + 1−µ

r1
+ µ

r2
+ 1

2
µ(1 − µ), and r1, r2 denote the distances from

7
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the spacecraft to the primaries m1 and m2 respectively: r2
1 = (X − µ)2 + Y 2 + Z2, and r2

2 =
(X + 1 − µ)2 + Y 2 + Z2.

Equilibrium points of the RTBP: particular solutions

The equilibrium points of a system of ordinary differential equations are the ones where the field
associated with the system is zero. That is to say,

Ẋ = Ẍ = 0, Ẏ = Ÿ = 0, Ż = Z̈ = 0.

If the infinitesimal particle was placed on one of this points, with no velocity and no acceleration, it
would remain at rest forever. Therefore, equilibrium points are considered to be special solutions
of the RTBP, as computing them implies finding a solution for all possible moments of time t.

Let (X,Y,Z) be an equilibrium point of the restricted three body problem. Then, it has to
satisfy that the right hand side terms of equations 2.1 are zero. That is,

∂Ω

∂X
= 0,

∂Ω

∂Y
= 0,

∂Ω

∂Z
= 0.

In more detail,
∂Ω
∂X

= X − 1−µ
r31

(X − µ) − µ
r32

(X + 1 − µ) = 0
∂Ω
∂Y

= Y − 1−µ
r31
Y − µ

r32
Y = 0

∂Ω
∂Z

= −1−µ
r31
Z − µ

r32
Z = 0











(2.2)

The third equation in (2.2) is trivially satisfied iff Z=0, because − 1−µ
r31

− µ
r32

is clearly negative.

Therefore, all equilibrium points are contained in the plane of relative motion of the primaries.
On the other hand, Y = 0 is a solution of the second equation in (2.2). Then, let us firstly study
the equilibrium points contained in the axis joining the primaries, Y = Z = 0.

By studying the function ∂Ω
∂X

, one finds that it is continuous for X different from the position
of both primaries. Furthermore, it undergoes changes of sign near the primaries: it has negative
sign at −∞ and positive sign for X = −1 + µ − ε, for ε sufficiently small. It has negative sign
again for X = −1 + µ + ε but positive sign for X = µ − ε. Finally, the sign changes one more
time from negative at X = µ + ε to positive at ∞. Therefore, three different crossings of the X
axis occur.

Let the distance from the small primary and the equilibrium point between this mass and −∞
be represented by γ. Then, X + 1 − µ = −γ and X − µ = −1 − γ. Therefore, after clearing the
fractions, the first equation of (2.2) can be written,

γ5 + (3 − µ)γ4 + (3 − 2µ)γ3 − µγ2 − 2µγ − µ = 0.

This quintic equation has one real solution which can be written as a power series of
(

µ
3

)1/3
and

provides the position of the so-called L2 point:

γ =
(µ

3

)
1
3 +

1

3

(µ

3

)
2
3 +

1

9

(µ

3

)
3
3 + . . .
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Similarly, let γ represent the distance between the small primary and the equilibrium point
found between the m1 and m2. In this case, X + 1 − µ = γ and X − µ = −1 + γ. Then, the
quintic equation to be solved is,

γ5 − (3 − µ)γ4 + (3 + 2µ)γ3 − µγ2 + 2µγ − µ = 0,

whose real solution can also be expressed in powers of
(

µ
3

)1/3
and represents the position of the

so-called L1 point:

γ =
(µ

3

)
1
3 − 1

3

(µ

3

)
2
3 − 1

9

(µ

3

)
3
3 + . . .

Finally, let 1−γ be the distance between the big primary and ∞. Then we have X−µ = 1+γ.
The equation to be solved is now,

γ5 − (7 + µ)γ4 + (19 + 6µ)γ3 − (24 + 13µ)γ2 + (12 + 14µ)γ − 7µ = 0.

The real solution of this quintic can be written in powers of µ. This equilibrium point, found in
the opposite side of the big primary with respect to the small primary, is usually called L3:

γ =
7

12
µ+

2372

124
µ3 + . . .

Now, all solutions of (2.2) with Y = 0 have already been found. Let us look for the ones with
Y 6= 0. Since Y is not zero, we can divide the second equation by it and we obtain:

1 − 1 − µ

r3
1

− µ

r3
2

= 0

Multiply this equation by (X − µ) and subtract the resulting equation from the first one. Then,
do the same with (X + 1 − µ). Therefore, equations (2.2) reduce to,

1 − 1
r31

= 0

−1 + 1
r32

= 0

z = 0











(2.3)

whose only real solutions are r1 = r2 = 1. So, the two equilibrium points which do not belong to
the X axis are the points forming equilateral triangles with the primaries, one with Y > 0 and
the other one with Y < 0.

The three equilibrium points which lay in the x-axis, are known as Euler points L1, L2 and
L3. The other two, are known as Lagrange points or L4 and L5

1. The five equilibrium points, as
well as the position of the primaries in the synodic reference frame are represented in figure 2.1.

1However, all five Li are commonly referred in the literature as Lagrangian points. They are also usually called
libration points.
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L 1L 2

L 5

L 4

L 3

✕✕ ✕

✕

✕

SE 0.5

0.5

−0.5

−0.5

Figure 2.1: The five equilibrium points of the RTBP.

Hamiltonian character of the RTBP

The RTBP is a Hamiltonian system. Taking the momenta px = Ẋ − Y , py = Ẏ +X and pz = Ż,
the corresponding Hamiltonian function is given by,

H =
1

2
(p2
x + p2

y + p2
z) + Y pz −Xpy −

1 − µ

((X − µ)2 + Y 2 + Z2)1/2
− µ

((X − µ+ 1)2 + Y 2 + Z2)1/2

The Hamiltonian equations of the system are,

Ẋ = px + Y

Ẏ = py −X

Ż = pz
ṗx = py − (1−µ)

r31
(X − µ) − µ

r32
(X − µ+ 1)

ṗy = −px − (1−µ)
r31

Y − µ
r32
Y

ṗz = − (1−µ)

r31
Z − µ

r32
Z







































(2.4)

Furthermore, at least one first integral of the motion exists for the RTBP (i.e. a quantity
which remains constant on the solutions) represented by this Hamiltonian function. However, we
will use it in an almost equivalent form, known as Jacobi constant or energy level, defined as:

C(X, Y, Z, Ẋ, Ẏ , Ż) = 2Ω(X, Y, Z) − (Ẋ2 + Ẏ 2 + Ż2), (2.5)

with Ω(X, Y, Z) as in (2.1). It can be proved that C(X, Y, Z, Ẋ, Ẏ , Ż) = −2H(X, Y, Z, Ẋ, Ẏ , Ż).

Zero velocity curves

It yields from equation (2.5) that for a given value of the Jacobi constant, C∗, the motion is only
possible in the points of the state space such that

C(X, Y, Z, Ẋ, Ẏ , Ż) − 2Ω(X, Y, Z) < 0.
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Figure 2.2: Zero velocity curves and forbidden regions. From left to right: C < CL2 , CL2 < C < CL1 and
C > CL1 .

Otherwise, v2 = Ẋ2 + Ẏ 2 + Ż2 would be negative, and this does not correspond to a real motion.
Consequently, the equality C = 2Ω(X, Y, Z) is satisfied by the points on the so-called zero

velocity surfaces, which divide R
3 in a zone where the RTBP motion is possible and, on the other

hand, a forbidden region, whose xy projection is shown in figure 2.2. In this figure, the grey zones
represent the region where motion is not possible.

It can be observed from the first picture on the left in figure 2.2 that for some values of the
Jacobi constant, the zero velocity surfaces allow for the existence of trajectories going from the
region of the big primary (in the centre of the ’corona’) to the region of the small primary (on
the left, between the zero velocity curves) and escaping afterwards to the outer region. On the
other hand, when the L2 side is closed (second picture in figure 2.2) no transit is allowed between
the interior region, containing the primaries, and the outer region. Furthermore, when the zero
velocity surfaces close both in L1 and L2, the movement takes place only around the primaries
with no possible transfers from one to the other (i.e. approximately 2-body motions around each
one of the primaries). We will usually work in energy levels corresponding to C < CL2 , as these
are the cases in which the movement around L1 and L2, as well as the transfers from one to the
other take place.

2.2 The phase space around the libration points

2.2.1 Stability of the Li points

We know from basic dynamical systems theory that given a linear system of differential equations,
ẋ = Bx, with B a constant matrix of real coefficients:

i. The system is asymptotically stable ⇔ all eigenvalues of B have negative real part.

ii. If the system is stable, all eigenvalues of B have non positive real part.

iii. Conversely, if all eigenvalues of B have non positive real part, and the ones with 0 real part
are simple (multiplicity 1), then the system is stable.
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When a linear system is also Hamiltonian, then its matrix B has to be infinitesimal symplectic.

That is, BTJ + JB = 0, where J=
( 0 I

-I 0

)

and I is the identity matrix.

The eigenvalues of a infinitesimal symplectic matrix have to satisfy:

iv. If λ is eigenvalue of B ⇒ − λ, λ̄ and −λ̄ are also eigenvalues of B (λ̄ = a + ib = a− ib, is
the complex conjugate).

v. If 0 is eigenvalue of B, then it has to have an even multiplicity.

Consequently, for a linear Hamiltonian system, the stability conditions are:

• The system is never asymptotically stable. If it existed an eigenvalue λ, with Re(λ) < 0,
then it would exist λ′ = −λ with Re(λ′) > 0 (see iv.). So, condition i. can never be fulfilled
for a Hamiltonian system.

• If the system is stable, then all eigenvalues of B are pure imaginary (Re(λ) = 0). This case
is called elliptic stability.

• If all eigenvalues of B are pure imaginary (no real part) and simple, then the system is
stable.

The RTBP is a Hamiltonian system. However, it is not linear. Therefore, in order to study
the stability of its equilibrium points, it is convenient to linealize the system around them. Let x0

be one of the five equilibrium points of the RTBP. Then the Hamiltonian system of equation (2.4)
can be written ẋ = XH(x) and its linearised form around x0 is,

ẋ = DXH(x0)(x− x0).

DXH(x0) = JD2H(x0), where D2H(x0) is the matrix of second derivatives of the Hamiltonian
function 2.4. The eigenvalues of DXH(x0) are called characteristic exponents of XH in x0, and
are the ones we have to compute in order to study the stability properties of the system around
the aforementioned equilibrium points:

• If there exists a characteristic exponent λ with Re(λ) > 0, then we can already affirm that
x0 is unstable. Therefore, for x0 to be stable it is necessary that all characteristic exponents
are pure imaginary (elliptic points).

• Unfortunately, for a non-linear Hamiltonian system, one cannot affirm that being all char-
acteristic exponents pure imaginary and simple, stability is guaranteed. However, if this is
the case, then there exists a symplectic change of coordinates such that the Hamiltonian
function can be cast into:

H =
1

2

n
∑

j=1

ωj(q
2
j + p2

j) +H3 +H4 + . . .

where, wj are the imaginary part of the characteristic exponents but with a well determined
sign. wj are then called characteristic frequencies. (H3 and H4 stand for third and fourth
order terms of the Hamiltonian function after the change of coordinates respectively).
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– If wj > 0 ∀j or ωj < 0 ∀j, we can affirm that the system is stable around x0 (Dirichlet
theorem).

– On the contrary, if there exist negative and positive characteristic frequencies, nothing
can be affirmed concerning stability. Other studies have to be performed (for n = 2,
KAM theory assures stability under certain conditions, for n ≥ 3 the notion of ’effective
stability’ is defined and proved).

For the particular case of the Lagrangian and Eulerian points of the RTBP we have that:

• The collinear equilibrium points L1, L2 and L3 are unstable. In particular, for all values of
µ ≤ 0.5, they have a couple of real characteristic exponents (λ and −λ) and two couples
of pure imaginary characteristic exponents (±ω1i and ±ω2i). That is to say that the linear
phase space around these points is of the type saddle×centre×centre. This is a property
we will use in order to find the central manifold (4 dimensional, arising from the centre×
centre part) and the stable and unstable manifolds (hyperbolic manifolds corresponding to
the saddle part).

• On the contrary, the characteristic exponents of L4 and L5 points are pure imaginary for

µ small enough (µ < 1
2

(

1 −
√

23
27

)

≈ 0.0385, critical Routh mass. Note that in celestial

mechanics, the value of the critical Routh mass is rather big, as µ is 0.012 for the Earth-
Moon problem and smaller for Sun-planet cases, even for Sun-Jupiter, with µ = 0.0009538.).
Therefore, L4 and L5 are elliptic equilibrium points. Although they do not have a linear
hyperbolic character, stability around these points is not straightforward, as their charac-
teristic frequencies have varying signs. Therefore, Dirichlet theorem for stability cannot be
applied. However, other studies prove their effective stability ([9]), in the sense that motions
in the vicinity of these points need to be integrated for a long time span before they go
away from them.

2.2.2 Types of libration orbits

From now on we are interested in the motion in the vicinity of L1 and L2. So we set the origin of
coordinates at the libration point, and scale the variables in such a way that the distance from
the smallest primary to the equilibrium point is equal to one (see [65]). In particular, the changes
of coordinates that we perform are:

x = − 1
γ
(X − µ+ 1 ∓ γ)

y = − 1
γ
Y

z = 1
γ
Z















where the upper sign in the expression of x corresponds to L1 and the lower sign to L2, and γ
is the distance from the equilibrium point to the small primary, m2. In the new coordinates,
equations (2.1) become,
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ẍ− 2 ẏ = 1
γ2

∂Ω
∂x

ÿ + 2 ẋ = 1
γ2

∂Ω
∂y

z̈ = 1
γ2

∂Ω
∂z







(2.6)

Now, in Ω the expression for r1 and r2 (distances from the particle m to the primaries) is,

r2
1 = (−γx− 1 ± γ)2 + γ2y2 + γ2z2 = γ2

[(

x− (−1 ± γ)

γ

)2

+ y2 + z2
]

,

r2
2 = (−γx± γ)2 + γ2y2 + γ2z2 = γ2[(x− 1)2 + y2 + z2],

where the upper sign corresponds once more to L1 case and the lower sign to L2.
Therefore,

1 − µ

r1
=

1 − µ

γ

1
√

(

x− (−1±γ)
γ

)2

+ y2 + z2

,
µ

r2
=
µ

γ

1
√

(x− 1)2 + y2 + z2
. (2.7)

The square roots in the denominator can be expanded in power series using the Legendre
polynomials, Pn(x), and the following property,

1
√

(x− A)2 + (y −B)2 + (z − C)2
=

1√
A2 +B2 + C2

∞
∑

n=0

( ρ

A2 +B2 + C2
)nPn

( Ax+By + Cz

ρ
√
A2 +B2 + C2

)

,

where ρ = x2 + y2 + z2.
So, expressions in (2.7) become,

1 − µ

r1
=

1 − µ

| − 1 ± γ|
∞

∑

n=0

(−1)n
( γ

| − 1 ± γ|
)n

ρnPn

(x

ρ

)

µ

r2
=
µ

γ

∞
∑

n=0

(±1)nρnPn

(x

ρ

)

.

Consequently, we have that,

1

γ2
Ω(x, y, z) =

1

2γ2
[(γx− (µ− 1 ± γ)2 + γ2y2] +

∞
∑

n=0

1

γ2
cnρ

nPn

(x

ρ

)

with,

cn =
1

γ2

( 1 − µ

| − 1 ± γ|(−1)n
( γ

| − 1 ± γ|
)n

+
µ

γ
(±1)n

)

. (2.8)

Remember that Legendre polynomials are defined as follows:

P0 = 1, P1(x) = x and Pn+1(x) =
2n+ 1

n + 1
xPn(x) −

n

n + 1
Pn−1(x).
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We can introduce the expression of the derivatives of Ω in terms of power series in the right
side of equations (2.6). However, in both L1 and L2,

∂Ω
∂x

= ∂Ω
∂y

= ∂Ω
∂z

= 0. Consequently, neither

the independent terms of the series nor the linear ones appear in equations (2.6), which can be
cast into,

ẍ− 2ẏ − (1 + 2c2)x =
∂

∂x

∑

n≥3

cnρ
nPn

(

x

ρ

)

,

ÿ + 2ẋ+ (c2 − 1)y =
∂

∂y

∑

n≥3

cnρ
nPn

(

x

ρ

)

, (2.9)

z̈ + c2z =
∂

∂z

∑

n≥3

cnρ
nPn

(

x

ρ

)

.

The left side of the above equations corresponds to the linearised system of ODE’s around the
libration points L1 and L2.

Furthermore, the expansion in power series can also be introduced in the the Hamiltonian
function 2.4. In this way, we obtain:

H =
1

2

(

p2
x + p2

y + p2
z

)

+ ypx − xpy −
∑

n≥2

cnρ
nPn

(

x

ρ

)

.

In order to get a picture of the phase space in a first approximation, we look at the linear part
of the system. With a linear symplectic change of coordinates (see [34]), the second order part of
the Hamiltonian is set into its real normal form,

H2 = λxpx +
ω

2
(y2 + p2

y) +
ν

2
(z2 + p2

z),

where λ, ω and ν are positive real numbers depending on c2. H2 implies a linear behaviour
near the collinear points of the type saddle×centre×centre. The centre×centre part accounts for
the existence of two oscillating motions: one in the xy plane and the other one in the vertical
direction, z. When terms of higher order are added to the solutions, the problem is no longer
linear. However, these two oscillations give rise to periodic motions: the planar Lyapunov orbit
(arising from the oscillation in the xy plane, and having a null vertical oscillating amplitude) and
the vertical Lyapunov orbit (respectively arising from the vertical oscillation).

Furthermore, the frequencies of the oscillations vary with the amplitudes and for a suitable
amplitude, both frequencies become equal. At this point the well known halo type periodic orbits
appear. When the frequencies of the two oscillations (vertical and planar) are not commensurable,
the motion is not periodic, but quasi periodic, resulting in the so-called Lissajous orbits (see
figure 2.3). This kind of motion is found both around the vertical periodic orbit and around
the halo orbits ([35], [36]). 2D tori, with two basic frequencies tending to ω and ν when the
amplitudes tend to zero, are also bound to appear. The rigorous proof of the existence of these
tori is problematic and similar to the KAM theorem (see [47]).

A convenient way of representing all these libration orbits, for a given energy level, consists of
representing their intersections with the plane of motion of the primaries, z = 0. This is called the
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Figure 2.3: Types of libration orbits. Top left: Halo orbit (xyz representation). Top right: Lissajous
type orbit (xyz representation). Bottom left: planar lyapunov orbit (xy projection). Bottom right: vertical
Lyapunov orbit (yz projection).
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Poincaré map representation. A planar orbit will appear in it as a closed curve, a periodic orbit
as a single point, and a quasi-periodic one as a set of points lying, more or less, on a curve. Figure
2.4 shows one of these representations. Near the centre of the figure one can see a fixed point.
It corresponds to a vertical periodic orbit that crosses the z = 0 plane at just this point. This
point (and so, the corresponding orbit) is surrounded by quasi-periodic motions that take place
on invariant tori. The external curve of the figure is the planar Lyapunov orbit (corresponding to
a given value of the Jacobi constant). Two other fixed points correspond to the two halo orbits,
which are symmetrical to one another with respect to z = 0. They are, in turn, surrounded by
invariant 2D tori. Between the 2D tori around the vertical orbit and the ones around the halo
orbit there are traces of unstable manifolds, asymptotic to the planar Lyapunov orbit (see [34]).

Figure 2.4: Poincaré map representation of the orbits near the libration point L1 for the value of the Jacobi
constant 3.00078515837634. The RTBP mass parameter corresponds to the Earth+Moon–Sun system.

Due to the strong unstable equilibrium that occurs near L1 and L2, it is not possible to perform
a direct numerical simulation of the Poincaré map in order to get an idea of the phase space.
Nevertheless, the centre×centre part, in all energy levels, gives rise to 4D manifolds where the
dynamics have a neutral behaviour. The study of the dynamics in the central manifold can be
done semi-analytically, using different methods such as the reduction to the normal form or to the
center manifold (see for example [48]). In the following section we will see how libration orbits can
be computed using Lindstedt-Poincaré procedures. Not only does this technique provide a semi
analytical way of describing the solutions, but it also expresses them in convenient coordinates,
with clear physical meaning which helps getting a geometrical insight into the problem.

2.3 Lindstedt-Poincaré procedures

The planar and vertical Lyapunov orbits, as well as the Lissajous, halo and quasi-halo orbits can
be computed using Lindstedt-Poincaré procedures. In this way one obtains their expansions in
convenient RTBP coordinates. Let us introduce the main ideas of the method.
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The linearisation of equations (2.9) can be written,

ẍ− 2ẏ − (1 + 2c2)x = 0
ÿ + 2ẋ+ (c2 − 1)y = 0

z̈ + c2z = 0







where the value of c2 depends on the mass parameter and the Li we are studying (it can be
computed using (2.8)). The solution of this linearised system is,

x(t) = A1e
λt + A2e

−λt + A3 cosωt+ A4 sinωt
y(t) = cA1e

λt − cA2e
−λt − κA4 cosωt+ κA3 sinωt

z(t) = A5 cos νt + A6 sin νt







(2.10)

where Ai are arbitrary constants and c, κ, ω, λ and ν are constants depending on c2 only:

ω =

√

2 − c2 +
√

9c22 − 8c2
2

, ν =
√
c2, c =

λ2 − 1 − 2c2
2λ

, (2.11)

λ =

√

c2 − 2 +
√

9c22 − 8c2
2

, κ =
−(ω2 + 1 + 2c2)

2ω
.

We can see in (2.10) that A1 and A2 are the coefficients of the exponential part, which
corresponds to the saddle component of the phase space. A1 is called the unstable hyperbolic
amplitude, because it accompanies the part corresponding to the eigenvalue which is responsible
for instability. On the other hand, A2 is the stable hyperbolic amplitude as it corresponds to an
eigenvalue with negative real part.

Solutions with A1 = A2 = 0 belong to the so-called centre manifold, as they only have bounded
terms (oscillating) as they only contain the part of the solution corresponding to pure imaginary
eigenvalues. That is, the manifold containing the solutions of the center× center part, with no
saddle components. Furthermore, it is convenient to look at the central solutions as having an
amplitude and a phase in the xy plane (Ax and φ) as well as an amplitude and a phase in the z
direction (Az and ψ). Therefore, we use the following relations,

A3 = Ax cosφ, A4 = −Ax sinφ,

A5 = Az cosψ and A6 = −Az sinψ.

Finally, the expression of the linearised solutions on the center manifold takes the form,

x(t) = Ax cos(ωt+ φ)

y(t) = κAx sin(ωt+ φ) (2.12)

z(t) = Az cos(νt + ψ)

where ω and ν are the planar and vertical characteristic frequencies and κ is a constant. The
parameters Ax and Az are the in-plane and out-of-plane amplitudes of the orbit and φ, ψ are the
phases. These linear solutions are already Lissajous trajectories. When we consider the nonlinear
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terms (in order to obtain solutions of the complete system), we look for formal series solutions in
powers of the amplitudes Ax and Az of the type







x
y
z







=

∞
∑

i,j=1





∑

|k|≤i,|m|≤j







x
y
z







ijkm







cos
sin
cos







(kθ1 +mθ2)



AixA
j
z, (2.13)

where θ1 = ωpt+ φ and θ2 = ωvt+ φ. Due to the presence of nonlinear terms, the frequencies ωp
and ωv cannot be kept equal to ω and ν, and they must be expanded in powers of the amplitudes

ωp = ω +

∞
∑

i,j=1

ωijA
i
xA

j
z, ωv = ν +

∞
∑

i,j=1

νijA
i
xA

j
z.

The goal is to compute the coefficients xijkm, yijkm, zijkm, ωij, and νij recurrently up to a finite
order N = i+ j. Identifying the coefficients of the general solution (2.13) with the ones obtained
from the solution of the linear part (2.12), we see that the non zero values are x1010 = 1, y1010 = κ,
z1010 = 1, ω00 = ω and ν00 = ν. Inserting the linear solution (2.12) in the equations of motion,
we get a remainder for each equation, which is a series in Ax and Az beginning with terms of
order i + j = 2. In order to get the coefficients of order two, this known order 2 terms must be
equated to the unknown order 2 terms of the left hand side of the equations. The general step is
similar. It assumes that the solution has been computed up to a certain order n− 1. Then it is
substituted in the right hand side of the RTBP equations, producing terms of order n in Ax and
Az. This known order n terms must be equated with the unknown terms of order n of the left
hand side.

Lissajous orbits already appear as solutions of the linearised system, halo and quasi-halo
orbits don’t. Therefore, modifications to the Lindstedt Poincaré technique have to be used in
each particular computation. For instance, we know that halo orbits appear when the in plane
and out of plane frequencies are equal. This is a 1:1 resonance that appears as a consequence of
the nonlinear terms of the equations and this is why halo orbits do not appear as a solution of
the linearised equations. We have to look for these 1-D tori as series expansions with a single
frequency. In order to use Lindstedt-Poincaré procedures, we add a term ∆ z to the third equation
of equation (2.9), where ∆ is a frequency type series, ∆ =

∑∞
i,j=0 dijA

i
xA

j
z, that must verify ∆ = 0.

We start by looking for the librating solutions with frequency ω,

x(t) = Ax cos(ωt+ φ)

y(t) = κAx sin(ωt+ φ) (2.14)

z(t) = Az cos(ωt+ ψ)

After this step, halo orbits are determined up to order 1, and ∆ = 0 is read as d00 = 0. Halo orbits
depend only on one frequency or one amplitude since they are 1-D invariant tori, so we have not
two independent amplitudes Ax and Az. The relation between the amplitudes is contained in the
condition ∆ = 0 which implicitly defines Ax = Ax(Az).

When we consider the full equations, we look for formal expansions in powers of the amplitudes
Ax and Az of the type







x
y
z







=
∞

∑

i,j=1







∑
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y
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cos
sin
cos







(kθ)
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j
z,
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where θ = ωpt+ φ and, as in the case of 2-D invariant tori, the frequency ω must be expanded as
ωp =

∑∞
i,j=0 ωijA

i
xA

j
z. The procedure for the computation of the unknown coefficients xijk, yijk,

zijk, ωij and dij is close to the one described for the Lissajous trajectories.
For an accurate description, as well as the computation of other types of orbits see [60].

2.4 JPL Solar System Ephemeris

We have described in the previous section the RTBP as a means to model the behaviour of a
system consisting of two massive bodies and a small particle. This approximation is an acceptable
model for the motion of the small mass for providing preliminary guesses. In addition, in the
frame of the RTBP, the dynamics in the vicinity of libration points has been thoroughly studied
and different kinds of orbits have been computed. However, when it comes to real mission design,
more realistic models have to used, such as the JPL Solar System Ephemeris.

The JPL Solar System Ephemeris specifies the past and future positions of the Sun, Moon
and nine planets in three-dimensional space. Planetary positions are generated by a computer
integration fit to the best available observations of the positions of the Sun, Moon, planets and
five largest asteroids. The computer integration involves step wise computation of the position of
each planet as determined by the gravitation of all of the other objects in the Solar System. The
planet’s position is stepped both forward and backward in time from some chosen epoch. Minor
adjustments are made to the masses and shapes of the Moon and planets to get best agreement
with their observed position of the last 80 years or so.

Each JPL ephemeris file consists of data blocks containing the coefficients for Chebyshev poly-
nomials that specify each of the three coordinate values and three coordinate velocity components
(by numeric differentiation) for each object over the time span of the data block, generally 32
days (8 for Mercury, 16 for the Earth and 4 for the Moon). In the header of the ephemeris file,
the constants assumed by the integrator are contained (such as the values of the masses of the
planets or the value of the astronomical unit, AU). We use the file JPL DE403, which is based on
planetary and reference data available in 1995 (see [76]), and uses the Earth mean equator and
equinox of epoch 2000.0 as the reference frame, with origin at the full Solar System barycenter of
that epoch.



Chapter 3

Eclipse avoidance and impulsive
transfers in Lissajous orbits

3.1 Introduction

Two of the main subsystems of a space vehicle, the power source and the communication sub-
system, can be seriously affected by eclipses in solar libration orbits. Around the Sun-Earth axis
there exists a cylinder-like zone where solar electromagnetic radiation is specially strong. The L1

libration point lays on the aforementioned axis and in between the two bodies. Therefore, the
communication link between a satellite orbiting L1 and the Earth can be damaged or interrupted
whenever the satellites crosses this cylinder. On the other hand, the problem around L2 is that the
Earth half-shadow can produce occultations which result in the space vehicle being temporarily
unable to obtain solar energy. Both problems can be modelled by placing a forbidden zone in the
yz plane (around the libration point) which should not be crossed and that is called exclusion
zone. Traditionally, big Halo orbits, which don’t cross the exclusion zone, have been used as
nominal paths in order to avoid this problem ([66], [20]). The main disadvantage of this kind of
periodic motion is that the in plane and out of plane amplitudes of a Halo orbit have to satisfy a
fixed relation, which may not always be optimal for mission requirements as this fact increases the
complexity and cost of some hardware parts of the satellites. On the contrary, Lissajous libration
point orbits are quasi periodic motions which allow for a high degree of freedom in the choice
of their amplitudes. Nevertheless, Lissajous orbits cross the exclusion zone if no maneuvers are
applied. This is the fact that motivates the work presented in this chapter.

A strategy for eclipse avoidance based on maneuvers which do not introduce unstable terms
to the motion in the Lissajous orbit is developed. The linear approximation to the Lissajous
motion is enough for the eclipse avoidance purpose ([8]) and leads to the implementation of a
design tool, the Effective Phases Plane (EPP). The EPP allows for a simple geometric solution
not only of the eclipse avoidance problem itself, but also of the planning of impulsive maneuvers
for transfers between Lissajous orbits. Finally, the EPP has also been applied in solving the
rendez-vous problem between different satellites on a Lissajous orbit, as shown in the last part of
the chapter.

21
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3.2 Linear approximation to Lissajous orbits.

Remember that the restricted three body problem, RTBP, is a simplified model for the motion of
a small particle under the gravitational attraction of two massive bodies. In this work we focus
on orbits around the equilibrium points known as L1 and L2, that are the ones closest to the small
primary. Therefore, a reference system centred on the corresponding equilibrium point will be
used as shown in chapter 2. In this new reference system, the form of the linearised equations is,

ẍ− 2 ẏ − (1 + 2c2) x = 0
ÿ + 2 ẋ+ (c2 − 1) y = 0

z̈ + c2 z = 0







(3.1)

where c2 is a constant which can be written in terms of the mass parameter, µ and γ, the distance
between the equilibrium point and the small primary (see again chapter 2),

c2 =
1

γ3
(µ+ (1 − µ)

γ3

(1 ∓ γ)3
) for L1 (upper sign) and L2 (lower sign).

Quasi-periodic solutions of the linear system (3.1) are characterised by an harmonic motion in
the xy plane (also known as in-plane component) and an uncoupled oscillation in the z direction
(also known as out-of-plane component) with a different period. The general solution is obtained
by adding the hyperbolic exponential parts to this oscillation or harmonic part. The hyperbolic
exponential parts have a part with positive exponent and, due to the Hamiltonian character, a
part with negative exponent. Therefore, the general form of the solutions of (3.1) can be written,

x(t) = A1e
λt + A2e

−λt + A3 cosωt+ A4 sinωt
y(t) = cA1e

λt − cA2e
−λt − κA4 cosωt+ κA3 sinωt

z(t) = A5 cos νt + A6 sin νt







(3.2)

where Ai are arbitrary constants and c, κ, ω, λ and ν are constants depending on c2:

ω =

√

2 − c2 +
√

9c22 − 8c2
2

, ν =
√
c2, c =

λ2 − 1 − 2c2
2λ

, (3.3)

λ =

√

c2 − 2 +
√

9c22 − 8c2
2

, κ =
−(ω2 + 1 + 2c2)

2ω
.

Furthermore, in this linear approximation the in-plane and out-of-plane motions are decoupled
and we get the following relations between the coordinates of the trajectory and the constants
A1, A2, ..., A6, (which are in fact first integrals of the motion),









x
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ẋ
ẏ









=









eλt e−λt cosωt sinωt
c eλt −c e−λt κ sinωt −κ cosωt
λ eλt −λ e−λt −ω sinωt ω cosωt
cλ eλt cλ e−λt κω cosωt κω sinωt
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(

z
ż

)

=

(

cos νt sin νt
−ν sin νt ν cos νt

) (

A5

A6

)

(3.4)

Inverting the system we get the first integrals of (3.2) in terms of a given state vector at time
t, (x(t), y(t), z(t), ẋ(t), ẏ(t), ż(t)):
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(3.5)

(

A5

A6

)

=





cos νt −1
ν

sin νt
− sin νt 1

ν
cos νt





(

z
ż

)

where d1 = cλ− κω and d2 = cω + κλ.
Finally, it is also convenient to look at the oscillatory solution of the linear part as having an

amplitude and a phase,

x(t) = A1e
λt + A2e

−λt + Ax cos (ωt+ φ)
y(t) = cA1e

λt − cA2e
−λt + κAx sin (ωt+ φ)

z(t) = Az cos (νt + ψ)







(3.6)

where the relations are A3 = Ax cosφ, A4 = −Ax sinφ, A5 = Az cosψ and A6 = −Az sinψ.
We note that choosing, A1 = A2 = 0, we obtain a periodic motion in the xy components

together with a periodic motion in z of a different period. This represents the Lissajous orbits in
the linearised restricted circular three-body problem, Ax, Az being the in-plane and out-of-plane
amplitudes of the oscillations respectively. The first integrals A1 and A2 are directly related
to the unstable and stable manifold of the linear Lissajous orbit. For instance, the relation
A1 = 0, A2 6= 0, defines a stable manifold. Any orbit verifying this condition will tend forward in
time to the Lissajous orbit defined by Ax and Az, since the term containing the A2-component in
(3.6) will die out. A similar fact happens when A1 6= 0, A2 = 0. The term with A1 will increase
in forward time, but die out backwards in time. Therefore, solutions having A1 6= 0 go away from
the oscillating or central part exponentially fast in forward time, and form the so-called unstable
manifold.

3.3 Non escape maneuvers

In our analysis of the transfer we want to avoid unstable motions in forward time. As the unstable
part is associated with the first integral that we call A1, this means that we require the condition
A1 = 0. Using the first equation in (3.5) this is equivalent to,

κ

d2
ẋ +

1

d1
ẏ =

κ

ω
d1x−

ω

d2
y (3.7)

It is important to note from this relation that given a position x, y of the spacecraft, we have an
explicit formula for the set of possible velocities, ẋ, ẏ, for which escape is avoided.
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Let us assume now that we are on a trajectory verifying the non escape condition A1 = 0
(for instance on a Lissajous orbit). If we want to keep this non escape condition after performing
a maneuver (∆ẋ,∆ẏ) we have to impose that the point after the maneuver also satisfies (3.7).
Due to the linearity of the condition, as well as the fact that maneuvers do not change the
instantaneous position, the condition is translated on the maneuver (∆ẋ,∆ẏ),

κ

d2
∆ẋ +

1

d1
∆ẏ = 0.

So the corollary is that the maneuvers preserving A1 = 0 are orthogonal to the vector ( κ
d2
, 1
d1

),

this is, (∆ẋ,∆ẏ) = a( 1
d1
, −κ
d2

) where a ∈ R. This expression will be used in its equivalent form,

(∆ẋ,∆ẏ) =
α√

c2 + κ2
(d2,−κd1) , α ∈ R (3.8)

where |α| indicates the size of the maneuver.
Note that the condition of non escape only affects components x and y of the maneuver. For

the linear approximation that we are using, unstable terms represented by the constant of motion
A1 appear only in the in-plane motion. Therefore, the z components are not affected, as motion
in this direction is uncoupled from the one in xy plane.

3.3.1 In plane maneuvers

We call in plane maneuvers to the maneuvers performed to the ẋ and ẏ components of the velocity.
These maneuvers are aimed at changing either the amplitude Ax or the in plane phase, φ.

Changing the in-plane amplitude

Let us assume that at a given time tm we perform a maneuver (∆ẋ,∆ẏ). The in-plane amplitude

Ax will change from an initial value A
(i)

x to a final one A
(f)

x given by,
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where ẋ(t−m) has to be understood as limt→tm,t<tm ẋ(t), and analogously for ẏ(t−m). These are the
x and y velocities just before performing the maneuver.

We use expressions of the amplitudes A3 and A4 in terms of x, y, ẋ, ẏ to compute the two latest
terms. (From now on, t stands for tm and x, y, ẋ, ẏ are assumed to be the ones corresponding to
this time):

A
(i)

3
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d2
∆ẋ sinωtm +

∆ẏ

d1
cosωtm
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c2λ

d1d2
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x∆ẏ cos2 ωt+

+
λ

d1d2
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(3.9)
We note that this expression is valid in the most generic case, this is, for any maneuver

(∆ẋ,∆ẏ). Let us assume now that the maneuver is done when the satellite is on a Lissajous
orbit. In this case for t ≤ tm we have,

x(t) = A
(i)

x cos (ωt+ φ) y(t) = κA
(i)

x sin (ωt+ φ)

ẋ(t) = −A(i)

x ω sin (ωt+ φ) ẏ(t) = κA
(i)

x ω cos (ωt+ φ)

So,

ẋ =
−ω
κ
y, ẏ = κωx andA

(i)

x

2
= x2 +

1

κ2
y2.

We use this to take ẋ and ẏ out from formula (3.9). Therefore, if we are on a Lissajous orbit, we
have:
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However, there exist some easy to prove relations between the constants cω
κd2

+ λ
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= 1
κ
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κω
d1

− cλ
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= −1, and consequently,
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Finally, using 1
κ2 y

2 + x2 = A
(i)

x

2
, we get,

A
(f)
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2
=

[

c

d2

∆ẋ− 1

κ
y(tm)

]2

+

[

1

d1

∆ẏ − x(tm)

]2

which represents the final in-plane amplitude that is reached when a maneuver (∆ẋ,∆ẏ) is ex-
ecuted at time tm in the x(tm), y(tm) position corresponding to a Lissajous orbit. Note that we
have yet to require the non escape condition to the maneuver.

Let us assume now that the maneuver at time tm is done in order to perform a transfer from
a Lissajous orbit to another one with a different in-plane amplitude, leaving the out-of-plane
motion untouched. The maneuver will be aimed at reaching A

(f)

x , but keeping A1 = 0. Therefore,
non escape maneuvers satisfying (3.8) have to be used. The new A2-term which appears as a
consequence of the maneuver tends to vanish, since it is accompanied by the exponential decay
in (3.6). The result is that the trajectory will reach the final orbit asymptotically with no more
maneuvers.

If a maneuver in the non escape direction is applied, the expression for the final in-plane
amplitude becomes,
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]
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2

where again, A
(i)

x

2
= 1

κ2y
2 + x2, has been used.

At this point it is convenient to introduce a constant angle, β, defined as the slope of the
vector (c, κ): (cos β, sin β) = ( c√

c2+κ2 ,
κ√

c2+κ2 ). Then, defining the function,

p(t) = A
(i)

x sin (ωt+ φi − β),

the expression for the final amplitude A
(f)

x becomes,

A
(f)

x

2
= α2 − 2p(tm)α + A

(i)

x

2
(3.12)

This means that, for a given time, the magnitude of the maneuver necessary to reach a target

in-plane amplitude is given by the quadratic equation, α2 − 2p(tm)α − (A
(f)

x

2 − A
(i)

x

2
)2, and so,

α = p(tm) ±
√

p2(tm) + (A(f)

x

2 − A(i)

x

2
). Moreover, using the definition of p(t), we have,

α = A
(i)

x sin (ωtm + φi − β) ±
√

A(f)

x

2 − A(i)

x

2
cos2 (ωtm + φi − β) (3.13)

From this last expression, we observe that,

• If A
(f)

x ≥ A
(i)

x , the transfer maneuver is possible at any time, as the terms inside the square
root are positive.

• If A
(f)

x < A
(i)

x , the transfer maneuver is possible only when ωtm + φi − β ∈
[

δ, π
2

+ δ
]

(mod

π), where δ = arccos (A
(f)
x

A
(i)
x

). Otherwise, expression (3.13) has non real values.
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Furthermore, for each fixed Af
x, one can choose the time tm for the transfer maneuver using

two criteria:

• Optimal maneuver time. Select tm in such a way that the ∆v expended in changing the
amplitude is a minimum. As we said in (3.8) this corresponds to the minimum of |α|.

• Change of the in-plane phase. Select tm in such a way that you arrive at the target orbit
with a selected phase.

Let us comment these possibilities and their implications.

Optimal in-plane maneuvers

Let us assume that A
(f)

x 6= A
(i)

x . Looking for the local minima of α(tm) we get that the optimal
tm are the ones that satisfy,

ωtm + φi = β + π
2
, or ωtm + φi = β + 3π

2
, (both mod 2π). (3.14)

This corresponds to the moments when the angle ωtm + φi is orthogonal to β, or equivalently,
when the satellite on a Lissajous orbit crosses the plane cx + y = 0. At this point the minimum
fuel expenditure that is necessary for transferring from a Lissajous orbit with in plane amplitude
equal to Ai

x to another one with amplitude Af
x using non escape maneuvers occurs. The value of

α in this case is, |αmin| = |A(f)

x − A
(i)

x |

Changing the in-plane phase

If we execute an in-plane maneuver at time tm we change the in-plane amplitude from A
(i)

x =
√

A
(i)

3

2
+ A

(i)

4

2
, to A

(f)

x =

√

A
(f)

3

2
+ A

(f)

4

2
, which will remain constant along the new trajectory.

But depending on tm, the values of the components A
(f)

3 and A
(f)

4 will be different, giving as a
result the possibility of reaching the target orbit at different phases.

Let us assume that at time tm we perform a maneuver, (∆ẋ,∆ẏ). Using the equations (3.5)

to compute the first integrals A
(f)

3 and A
(f)

4 in terms of x(tm), y(tm), ẋ(t+m) and ẏ(t+m), where
ẋ(t+m) = ẋ(t−m) + ∆ẋ, and analogously for ẏ(t+m) (i.e. the velocities just after the maneuver), we
obtain,

A
(f)

3 = A
(i)

3 − c

d2

sinωtm∆ẋ− 1

d1

cosωtm∆ẏ,

A
(f)

4 = A
(i)

4 +
c

d2

cosωtm∆ẋ− 1

d1

sinωtm∆ẏ.

Assuming, indeed, that the maneuver (∆ẋ,∆ẏ) is done in the non escape direction (3.8) and
using the definition of β, these formulae can be cast into,

A
(f)

3 = A
(i)

3 − α(tm) sin (ωtm − β), A
(f)

4 = A
(i)

4 + α(tm) cos (ωtm − β), (3.15)

where, if the maneuver is done when the satellite is on a Lissajous orbit, and the target amplitude
A

(f)

x can be effectively reached, the value of α(tm) is given by (3.13).
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Therefore, using that A
(f)

3 = A
(f)

x cosφf and A
(f)

4 = −A(f)

x sinφf , we get that the new phase after
the in-plane maneuver is defined by,

cosφf =
1

A(f)

x

(

A
(i)

x cosφi − α(tm)sin(ωtm − β)
)

(3.16)

sinφf =
1

A(f)

x

(

A
(i)

x sinφi − α(tm)cos(ωtm − β)
)

In-plane phase change maneuvers maintaining the amplitude

Let us study the case where the in-plane amplitude is maintained as a particular application of
the phase change maneuvers. This special case will be very useful for the design of strategies that
avoid the exclusion zones.

Assume that we perform the maneuver on a Lissajous orbit,

x(t) = A
(i)

x cos (ωt+ φi), y(t) = −κA(i)

x sin (ωt+ φi),

with the purpose of arriving asymptotically to another one,

x(t) = A
(f)

x cos (ωt+ φf), y(t) = −κA(f)

x sin (ωt+ φf),

with A
(f)

x = A
(i)

x that will be just denoted by Ax in this subsection. We want to link φf with φi
depending on tm.

In this case, according to (3.13), the non trivial maneuver at time tm is given by,

α(tm) = 2Ax sin (ωtm + φi − β) = 2p(tm).

Using now (3.15) and the fact that A
(i)

3 = Ax cosφi, A
(i)

4 = −Ax sinφi, we get the new components
for the in-plane amplitude,

A
(f)

3 = Ax cosφi − 2Ax sin (ωtm + φi − β) sin (ωtm − β)

A
(f)

4 = −Ax sinφi + 2Ax sin (ωtm + φi − β) cos (ωtm − β).

And after some trigonometry the computations end up with,

A
(f)

3 = Ax cos [2(ωtm − β) + φi], A
(f)

4 = Ax sin [2(ωtm − β) + φi]. (3.17)

Comparing these expressions with their alternative ones, A
(f)

3 = Ax cosφf , and A
(f)

4 = −Ax sinφf ,
we see that the relation between the phases is φf = −2(ωtm − β) − φi or equivalently,

φf − φi = −2(ωtm − β + φi) (mod 2π). (3.18)

It is important to note that from equation (3.18), given an initial phase φi, there is only one
possible jump (modulus 2π) at each maneuvering time tm. Or equivalently, if the desired jump in
phases is known, the moment tm at which to accomplish the change of phases can be computed
from this equation.
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3.3.2 Out of plane maneuvers

Let us assume that a z-maneuver is performed at a given time tm. Using (3.5) in a similar way
that for the discussion of the in-plane maneuvers, a ∆v of magnitude ∆ż in the z direction changes
the first integrals A5 and A6, according to,

A
(f)

5 = A
(i)

5 − ∆ż

ν
sin (νtm), A

(f)

6 = A
(i)

6 +
∆ż

ν
cos (νtm). (3.19)

After some algebra which uses (3.4) we get the following expression for the z-amplitude,

A
(f)

z

2
= A

(f)

5

2
+ A

(f)

6

2
= A

(i)

z

2
+

2

ν2
ż(t−m)∆ż +

(∆ż)2

ν2
.

But according to (3.6), the motion in the z component until just before the maneuver is, ż =

−νA(i)

z sin (νt + ψi), and so,

A
(f)

z

2
=

(∆ż)2

ν2
− 2

∆ż

ν
A

(i)

z sin (νtm + ψi) + A
(i)

z

2
. (3.20)

We note that equations (3.19) and (3.20) are completely analogous to equations (3.15) and
(3.12) of the in-plane case respectively. Essentially, the formal role of α is now played by ∆ż/ν
and the former angle, β, is now zero. Then, the discussion for the out of plane maneuvers follows
a parallel way to the one we have done for the in-plane case. Therefore, the results will only be
summarised here.

The formula for the required ∆v analogous to (3.13) is now,

∆ż

ν
= A

(i)

z sin (νtm + ψi) ±
√

A(f)

z

2 − A(i)

z

2
cos2 (νtm + ψi) (3.21)

and the corresponding discussion is the following. If,

• A
(f)

z ≥ A
(i)

z the transfer maneuver is possible at any time.

• A
(f)

z < A
(i)

z the transfer maneuver is possible only if the expression inside the square root is

positive. More precisely, when νtm + ψi ∈
[

ε, π
2

+ ε
]

(mod π), where ε = arccos (A
(f)
z

A
(i)
z

).

Again, two different criteria can help in choosing the time for the maneuver: optimal cost
maneuver or fixed arriving phase.

Optimal out-of-plane maneuvers

When the transfer is possible, the maneuver to change the out-of-plane amplitude from A
(i)

z to

A
(f)

z is optimal when tm verifies,

νtm + ψi = π
2
, or νtm + ψi = 3π

2
, (both mod 2π). (3.22)

In this case, the minimal ∆v = |∆ż| is given according to, ∆ż = ν(A
(i)

z − A
(f)

z ), or ∆ż =

ν(A
(f)

z − A
(i)

z ), for the π/2 or 3π/2 cases respectively.

Since the out-of-plane movement is governed by z(t) = A
(i)

z cos (νt + ψi), we note that the
optimal times correspond to z = 0. This is when the satellite crosses the ecliptic plane, which is
natural if we think in terms of energy. We remark that the ecliptic plane plays the same role for
the out-of-plane maneuvers as the plane cx+ y = 0 plays for the in-plane ones.
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Changing the out-of-plane phase

Equations (3.19) give us the components of the final z-amplitude A
(f)

z . The corresponding phase,

ψf , can be obtained from the definition, A
(f)

5 = A
(f)

z cosψf , A
(f)

6 = −A(f)

z sinψf .
In this context we can also consider a maneuver in the z-component to change the out-of-plane

phase without changing the amplitude. The equation which gives now the non trivial maneuver
is,

∆ż

ν
= 2Az sin (νtm + ψi), (3.23)

and the corresponding change of phase as a function of tm is,

ψf − ψi = −2(νtm + ψi) (mod 2π) (3.24)

We observe that in this case the maneuver (3.23) corresponds to inverting the z component of
the velocity. Remark again that given an initial out of plane phase ψi, there is only one possible
jump in ψ (obviously, modulus 2π) at each moment of time, tm.

3.4 The effective phases plane (EPP)

Looking at the central part of (3.6) or equivalently, if the satellite is on a Lissajous orbit we have,

x(t) = Ax cos(ωt+ φ), y(t) = κAx sin(ωt+ φ), z(t) = Az cos(νt + ψ). (3.25)

We note that due to the autonomous character of the original system of differential equations
(3.1), we can reset t = 0 at any time if we recompute the Ai values of the solution (3.6) using
equations (3.5). For the central part (3.25) mentioned above, due to the invariance of the am-
plitudes Ax and Az it is even easier, since t can be reseted to zero at time t0 just changing the
phases φ and ψ by φ + ωt0 and ψ + νt0 respectively. This observation motivates the following
definitions.

Let us define the effective phase Φ as all the epochs t and all the phases φ such that Φ(t, φ) =
ωt+ φ (mod 2π). In the same way we define the effective phase Ψ as all the epochs t and all the
phases ψ such that Ψ(t, ψ) = νt + ψ (mod 2π). Even though from this definition the effective
phases are a function of the time and the initial phase, (t, φ) or (t, ψ), taking values in subsets of
R × [0, 2π], it is more convenient to identify them by numbers Φ and Ψ in [0, 2π].

Using equations (3.25) and taking also into account the velocities, we note that there is a
biunivocal correspondence between a pair of effective phases (Φ,Ψ) and a state (x, y, z, ẋ, ẏ, ż)
on a Lissajous orbit of given amplitudes Ax and Az. In fact, from a dynamical systems point of
view, this is a consequence that Lissajous orbits are 2D tori. Therefore, we are just using the well
known action-angle variables of the tori.

The convenience of using the effective phases becomes clear since in the space (Φ,Ψ) a trajec-
tory such as (3.25) with initial phases (φi, ψi), is seen as a straight line of slope ω/ν, starting at
the point (φi, ψi), which propagates with constant velocity components ω and ν respectively in
the directions Φ and Ψ. So, dynamics become much easier when studied in this representation.

As a first application of the effective phases we have that it is very easy to geometrically
define the location for the optimal maneuvers in (3.14). The optimal maneuver to change the Ax
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Figure 3.1: Correspondence between Lissajous points (top) and the effective phases (bottom). The zones
labelled with capital letters are the regions where the x, y and z coordinates have constant sign. The same
labels on the EPP indicate which set of phases on the EPP leads to each zone on the orbit. The ellipse like
plots in the EPP represent exclusion zones, whose crossing should be avoided.
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amplitude has to be done when the trajectory in the space of effective phases crosses either the
line Φ = β + π

2
or Φ = β + 3π

2
. In addition, according to (3.22), the optimal change of Az occurs

either when crossing Ψ = π
2

or Ψ = 3π
2

.
Actually, the space of effective phases –from now on the effective phases plane or EPP– can

be used as a nice and general tool for mission design. Some of its applications are presented in
the following sections.

3.5 Eclipse avoidance

Usually a technical requirement for libration point satellites is to avoid an exclusion zone. For
orbits around L1 in the Sun–Earth system, the region that has to be avoided is due to the strong
electromagnetic influence of the Sun. For orbits around L2 in the Sun–Earth system sometimes
the Earth shadow has to be avoided. In both cases, since the x axis in the adapted reference
system goes through the Sun and the Earth, the exclusion zone is set as a disk in the yz plane
centred at the origin (as seen in figure 3.2). If the duration of the mission is long enough, the
satellite will irremediable cross the exclusion zone when the nominal path follows a Lissajous
orbit. The time to enter eclipse depends on the initial point of the Lissajous, as well as the
amplitudes, and in the best case the time span between eclipses is about 6 years for an orbit of
moderate size (see [62]).

A new eclipse avoidance strategy has been developed, based on the change of phases produced
by non escape maneuvers and using single impulses. Strategies with more than one impulse could
also be studied but are not the purpose of this work. Actually, one of the nicest things of single
impulse strategies is their simplicity together with an affordable cost.

3.5.1 Exclusion zones

We call exclusion zone to the set of points that the satellite should not cross, as they represent
the occultation or eclipse points. Assuming that the satellite is on a Lissajous orbit of amplitudes
Ax and Az, the exclusion zone appears in the yz plane as a disk of radius R (see figure 3.2),

y2 + z2 < R2.

Therefore, introducing the expressions for y(t) and z(t) seen in (3.6), with A1 = A2 = 0, and
using the definition of the effective phases, Φ = ωt+ φi, Ψ = νt+ ψi, we have that the border of
the disk in the effective phases plane satisfies the equation,

κ2A2
x sin2 Φ + A2

z cos2 Ψ = R2, (3.26)

and are the ellipse like plots represented in figure 3.3.
Of course, it is necessary that the Lissajous orbit is big enough, that is R < Ay = κAx and

R < Az (otherwise, the orbit will suffer from a continuous eclipse!).
For the sake of simplicity, the EPP will be reduced to [0, 2π] × [0, 2π]. The values Φ = 0 and

Φ = 2π are identified, as well as Ψ = 0 and Ψ = 2π (i.e. we are using the well known equivalence
of phases modulus 2π). Once the amplitudes Ax and Az are fixed, each couple of phase in the
EPP gives complete information of the point they represent in the state space (x, y, z, ẋ, ẏ, ż). In
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Figure 3.2: 3-D view of the exclusion disks on a real Lissajous orbit (top), and their representation on the
EPP (bottom). The exclusion zone crosses the Lissajous, intersecting the orbit in the front (labelled as F in
the picture at the bottom) and in the back (labelled as B). Around L2, the ones marked with F correspond
to the one closest to the Earth (x > 0) and the ones with B correspond to the furthest. For the L1 case,
letters F and B must be interchanged.
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Figure 3.3: Exclusion zone in the effective phases plane (EPP) (left) and Lissajous trajectory hitting an
exclusion zone (right). We remark that in the EPP a Lissajous trajectory appears as an straight line which
propagates at a constant speed. We will always use the horizontal axis for Φ and the vertical one for Ψ.

ω ν ν/ω usual R (km) angle from Earth
L1 2.08645356 2.01521066 0.9658545 90000 ' 3.5 deg radius
L2 2.05701420 1.98507486 0.9650272 14000 ' 0.54 deg radius

Table 3.1: Values of the frequencies and exclusion zone size for the Sun-Earth+Moon problem.

particular, when the satellite is on a Lissajous orbit, the rectangular regions in which the EPP
is divided in figure 3.1 correspond to constant sign of local coordinates. More precisely, z > 0
in regions A,B,C,D, y > 0 in regions C,D,G,H and x > 0 in regions A,D,E,H. Consequently, the
exclusion zones that lay in the middle of the EPP (near Φ = π) represent the exclusion zone
in the Lissajous orbit that is closer to the Earth, while the ones that are splitted in Φ = 0 and
Φ = 2π represent the exclusion zone in the part of the Lissajous which is further away from the
Earth. Moreover, for Lissajous around L1 closer to the Earth means further away from the Sun.
Therefore, in this case, the exclusion zones that we see in the middle of the EPP lay in the back
part of the Lissajous with respect to the Sun. On the contrary, for Lissajous around L2, the
exclusion zone in the middle of the EPP is at the front part of the Lissajous with respect to the
Sun (see figure 3.2).

When the Lissajous trajectory cuts one of the ellipse like curves in the EPP, it means that
the satellite is entering the exclusion zone. In this way, note that the computation of the time
at which the eclipse will occur is reduced to looking for the intersection between the straight
line representing the Lissajous and the first exclusion zone it hits (see the picture on the right
in figure 3.3). Moreover, from values in table 3.1 we see that ν/ω is slightly less than 1 in both
cases, for L1 and for L2. This means that trajectories which are tangential to an exclusion zone
at its upper points collide with another exclusion zone in a short time. On the other hand, initial
conditions represented by the lower tangential points are the best ones in terms of maximising
the time without eclipse, with more than 6 years from departure to collision. In figure 3.4, the
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time to the first eclipse is represented for each couple of initial phases, given the values of the
amplitudes. It is clear from the pictures that lower tangential trajectories (represented in yellow)
are the ones that provide a longest free of eclipse period.
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Figure 3.4: Initial phases classification according to the time when they first hit an exclusion zone. (left) L1

case Ay = Az = 250000 km, R = 90000 km. (right) L2 case Ay = Az = 120000 km, R = 14000 km.

In most of our discussion we will consider square Lissajous. This is, Ay = Az and this value
will be denoted by A. In this case, the border of the exclusion zones in the EPP is given by
sin2 Φ + cos2 Ψ = (R/A)2, meaning that the time without eclipse depends only on the relative
size R/A of the exclusion zones. Consequently, missions with different amplitudes and different
exclusion zone radius can have identical representations in the EPP if the relative size R/A is
the same. This fact allows us to compute the maximum time for a mission without hitting an
exclusion zone as a function only of R/A which will be considered in percentage. It is just a matter
of computing the intersection time of the orbits starting at the lower tangential conditions. For
all orbits and exclusion zones of moderate size, that is R/A less than 30%, the results are about
6 years and are represented in figure 3.5.

The main idea of our strategy is to perform a maneuver at an appropriate time before the
satellite enters the exclusion zone, so that it returns tangentially to the exclusion zone instead of
crossing it.

3.5.2 Eclipse avoidance strategy

We have seen that if we want to minimise the time without eclipse after the maneuvers, we have
to use the lower tangential points or, more specifically, lower tangential trajectories as target
points in our eclipse avoidance strategy. Let us explain how to reach these trajectories by means
of non escape maneuvers and using the EPP.
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Figure 3.5: Maximum time without entering an exclusion zone for square Lissajous as a function of the
relative size of the exclusion zone R/A in percentage. Lissajous around L1 (left), around L2, (right).

Non escape maneuvers in the EPP

Remember that maneuvers in the xy plane change the in plane phase Φ, while z-maneuvers
change the out of plane phase, Ψ. When a collision with an exclusion zone occurs, the distance
from the current colliding trajectory to the one being tangential to the lower part of the exclusion
zone can be easily computed using the EPP. Then, the lower tangential trajectory can be reached
either by using in plane or out of plane maneuvers. If xy maneuvers are used, we have to measure
the distance between the trajectories horizontally, in the Φ axis of the EPP. Respectively, if z
maneuvers are performed, the distance is measured vertically (in the Ψ axis).

Let ∆φ be the jump we want to do in the φ direction. Equation (3.18) shows which are
moments tm that provide this change of phases. However, as the relation represented in the
aforementioned equation is a congruence, there are multiple possibilities for tm. In this work, we
use tm such that

φi < φi + ∆φ(tm) < φi + 2π. (3.27)

On the other hand, the change of phases that is needed in the Ψ direction, ∆Ψ, is computed
by measuring the distance from the colliding trajectory to a trajectory that is tangential to the
lowest point of the same exclusion zone with which the collision occurs. Therefore, ∆ψ is seen in
the EPP as a negative jump leading to a lower value of Ψ. The time tm yields from 3.24. In this
way, the final effect on the Lissajous orbit is the same as the one obtained with xy-maneuvers (see
figure 3.6). Moreover, maneuvers in the z direction are seen in the EPP as a jump which is either
symmetrical with respect to the line Ψ = π or with respect to Ψ = 0 (equivalently Ψ = 2π).

There is something to be taken into account concerning xy-maneuvers. Maneuvers of the
type 3.8 produce a transfer from the central part of a Lissajous orbit to the stable manifold of
another one, but not exactly to the central part of the other one. There is a short time span after
a maneuver when the trajectory has stable hyperbolic exponentially decreasing terms, which lead
to little deviations from the central Lissajous. These little deviations also result in the effective
phases plane no longer being a biunivocal representation for the satellite trajectory. Let A2 be
the coefficient for these terms. For a biunivocal correspondence, we should somehow draw a 3D
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Figure 3.6: (left)Detail of a Φ-change maneuver. (right) Detail of a Ψ-change maneuver. The initial
conditions correspond to the point 0 and the jump occurs from 1 to 2. Both maneuvers lead to the same
lower tangential trajectory.

picture (φ, ψ, A2e
−λt) whose xy-section (φ, ψ, 0) corresponds to the part of the trajectory truly

contained in the central part of a Lissajous orbit. These exponentially decreasing terms vanish
long before we intersect a new exclusion zone. Thus, they are not important for our maneuver
performance, but we have to bear them in mind for a correct approach to the linear problem
as well as when representing trajectories on the Lissajous, that always have to be continuous in
position coordinates. There could exist rare exceptions in which even if the trajectory in the
EPP looked tangent to the exclusion zone, the satellite still had some stable manifold component
producing a deviation with respect to the represented coordinates in the wrong direction and
it really crossed the exclusion zone. These exceptions can be easily avoided by considering the
exclusion zone slightly bigger than what is strictly necessary. In all the examples and simulations
performed during the present work, there has been no need for the enlargement of the exclusion
zone. Apart from this remark, in a similar way as the z-maneuvers, the xy-maneuvers appear as
jumps symmetrical with respect to Φ = β or with respect to Φ = π+β. Both types of maneuvers
are computed by implementing an easy algorithm to find the suitable tm, which using (3.18) or
(3.24) obtains the required ∆Φ = φf − φi or ∆Ψ = ψf − ψi.

See figure 3.6 to better understand the computation of the ∆φ and ∆ψ, as well as the effect
of the maneuvers on the EPP trajectory.

The tangent to tangent cycle

Our strategy for eclipse avoidance consists of choosing a pair of initial phases, following the
trajectory until it is about to collide with an exclusion zone and performing a maneuver which
will resettle the satellite in another trajectory, tangential to the exclusion zone.

Therefore, the steps that have to be followed are:

1. Take (Φi,Ψi) ∈ [0, 2π] × [0, 2π], initial phases in the EPP, and set t = 0. These are the



Chapter 3 Eclipse avoidance and impulsive transfers in Lissajous orbits 38

injection phases and represent an injection point for the satellite in the Lissajous orbit. As
time increases, the satellite will inevitably approach the exclusion zone and intersect it at
time tc and phases (Φc,Ψc).

2. We look for a maneuver time tm, previous to collision (tm < tc), such that:

- (Φ(tm) + ∆φ(tm),Ψ(tm)) = (Φf
m,Ψ

f
m) ∈ LTT, if we use in plane maneuvers.

- (Φ(tm),Ψ(tm) + ∆ψ(tm)) = (Φf
m,Ψ

f
m) ∈ LTT, if we use out of plane maneuvers.

LLT stands for lower tangential trajectory, which is a line in the EPP containing lower
tangential phases on the border of the exclusion zone, (φtg, ψtg). (Φ(t),Ψ(t)) are the effective
phases at time t. ∆φ(t) (respectively ∆ψ(t)) represents the maneuver in the xy (respectively
z) direction) at time t. After the maneuver, we set (Φi,Ψi) = (Φf

m,Ψ
f
m) and t = 0.

3. Once we have found tm and the maneuver has been executed, the satellite is in a tangential
trajectory. This trajectory just has to be followed until a new collision occurs. Then, we
proceed as in 2 and we find the suitable tm at which a maneuver will place the satellite in
a new lower tangential trajectory.

To sum up, the time to next collision is computed after each maneuver, as well as the change
in the in plane or out of plane phases that is needed to avoid this collision while jumping to a
lower tangential trajectory. Once the jump is computed, the moment tm at which it has to be
performed can be deduced from equations (3.18) and (3.24). After the maneuver, the satellite
enjoys the longest possible period without eclipse. Nevertheless, other collisions occur, and the
avoidance maneuvers are repeated when necessary, always leading to lower tangential trajectories.
This is the reason for the name of the strategy: tangent to tangent cycle.

We define a cycle as the part of trajectory in the EPP comprised between two lower tangencies
and having a maneuver in between. There is a technical remark to be made about closing a cycle:
several slightly different patterns in the xyz representation of the trajectory can appear. This
is due to the fact that the exclusion zones displayed in the EPP have different meanings (see
figure 3.2). Let us assume that the cycle begins with a tangency to the exclusion zone F+ (the
exclusion zone closer to the Earth), next tangency closing the cycle in the EPP can only happen
either with F− (again the exclusion zone closer to the Earth), or with B+ (the exclusion zone
farther from Earth). In general, a cycle goes from F+,− (respectively from B+,−) to F−,+ or to
B+,− (respectively to B−,+ or to F+,−). If the cycle ends with the same letter as it started (i.e.
from F to F or from B to B) we say that the cycle is one-sided, otherwise we say that is two-sided.
Moreover, for both cases two cycles are needed to repeat the same starting position and velocity
(and so the same pattern in the xyz-coordinates), but since both maneuvers of these cycles have
the same magnitude and the time span between them is the same, it is not necessary to make
such distinctions for the total amount of delta-v expended and for the results we present. A given
Lissajous is associated to a one sided or to a two-sided cycle depending on the size of R/A, i.e.
the size of the exclusion zone in the EPP. Figures 3.7 and 3.8 give some examples of maneuvers
associated to one-sided or two-sided cycles. Note that for one-sided cycles the projection of the
maneuvers in the xy plane is always the same.
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Figure 3.7: Examples of one-sided cycles. Top two rows, trajectories around L1 with A = 157000 km,
R = 90000 km. Bottom two rows, trajectories around L2 with A = 120000 km, R=14000 km. xy-maneuvers
are used in rows 1,3 and z maneuvers in rows 2 and 4. From left to right displaying the xy, yz and xz
projections. The maneuvers are marked with a small box.
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Figure 3.8: Examples of two-sided cycles. Top two rows, trajectories around L1 with A = 120000 km,
R = 90000 km. Bottom two rows, trajectories around L2 with A = 60000 km, R=14000 km. xy-maneuvers
are used in rows 1,3 and z maneuvers in rows 2 and 4. From left to right displaying the xy, yz and xz
projections. The maneuvers are marked with a small box.
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3.5.3 Results

All Lissajous orbits considered have amplitude A = Ay = Az (so-called square Lissajous). Quali-
tatively, the results depend only on the relative amplitude R/A. However, in terms of real cost,
they also depend on A. The main result is that the xy-strategy is proportionally a little cheaper
for orbits of relative size R/A less than 60%. When R/A is bigger than 60% then the z-strategy
is cheaper than the xy-strategy (see figure 3.9).

0.7

0.8

0.9

1

1.1

1.2

1.3

0 10 20 30 40 50 60 70 80 90

relative amplitude R/A in %

cost z/cost xy around L1 for each relative amplitude

0.7

0.8

0.9

1

1.1

1.2

1.3

0 5 10 15 20 25 30 35 40 45 50 55

relative amplitude R/A in %

cost z/cost xy around L2 for each relative amplitude

Figure 3.9: Relative cost of performing maneuvers in xy or in z, costz
costxy

, around L1 (left) and around L2

(right)

Once we have fixed A and R we can apply the strategy to an arbitrary (φi, ψi). What we
obtain is that after an adjusting initial maneuver, from the actual trajectory to a lower tangential
trajectory, the satellite enters a tangent to tangent cycle of fixed period and cost per year, no
matter which the initial phases are. Note that this first maneuver is different from all the others,
because starting at the second maneuver, all of them jump from one lower tangential trajectory
to another one. So the only thing that makes a difference in cost between a set of initial phases
and another one is the cost of the first maneuver. Figure 3.10 shows the different costs of this first
adjusting maneuver and the time for the second maneuver (i.e. the time at which the tangent to
tangent cycle starts) for each pair of injection phases and a fixed relative amplitude, AR = 30%.

Concerning the actual costs for the eclipse avoidance strategy, these can be seen in table 3.2
for the L1 case and in table 3.3 for the L2 case.

Comments on the dependence of the cost on the amplitude of the Lissajous orbits.

Fixing the exclusion zone to R = 90000 km for the case of L1 and to R = 14000 km for the case of
L2 we obtain the figures of the average cost per year with respect to the relative amplitude, shown
in figure 3.11, using tables 3.2 and 3.3. It can be observed from these figures that results are
essentially piecewise inversely proportional to the relative amplitude. We can clearly distinguish
groups of relative amplitudes for which the proportionality constant of the cost, as well as the
time without eclipse after the maneuver are the same. Each of these groups corresponds to a row
in the aforementioned tables, and is represented by the corresponding segment in the figures.
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R/A (%) ACY= K∗ × A (cm/s) TWE (years) MC= M∗ × A (cm/s)
From To Kxy Kz xy z Mxy Mz

77.25 80.35 39.571 38.063 1.737 1.917 68.727 72.972
73.95 77.20 33.785 32.955 1.985 2.157 67.059 71.077
70.66 73.94 29.191 28.784 2.233 2.396 65.184 68.978
67.32 70.65 25.435 25.295 2.481 2.636 63.108 66.680
63.92 67.31 22.291 22.322 2.729 2.876 60.838 64.191
60.50 63.92 19.608 19.746 2.977 3.115 58.379 61.517
57.00 60.45 17.282 17.486 3.225 3.355 55.741 58.666
53.46 56.99 15.238 15.480 3.473 3.595 52.932 55.647
49.90 53.45 13.425 13.684 3.722 3.834 49.958 52.467
46.30 49.89 11.797 12.061 3.970 4.074 46.831 49.136
42.65 46.28 10.327 10.586 4.218 4.313 43.560 45.665
39.00 42.64 8.991 9.238 4.466 4.553 40.154 42.061
35.30 38.96 7.769 7.999 4.714 4.793 36.624 38.337
31.54 35.25 6.646 6.856 4.962 5.032 32.982 34.502
27.80 31.53 5.611 5.798 5.210 5.272 29.238 30.569
24.05 27.75 4.654 4.816 5.458 5.512 25.403 26.547
20.20 24.00 3.766 3.903 5.706 5.751 21.491 22.450
16.41 20.15 2.941 3.052 5.955 5.991 17.512 18.287
12.60 16.40 2.173 2.258 6.202 6.231 13.479 14.072
8.80 12.55 1.458 1.517 6.451 6.470 9.405 9.816
5.00 8.77 0.791 0.824 6.699 6.710 5.301 5.533
2.80 4.93 0.170 0.177 6.947 6.949 2.363 1.233

Table 3.2: Summary of results for avoiding the exclusion zone around L1 using xy or z maneuvers. ACY=
K∗ × A is the average cost per year (the coefficients that appear in the table have to be multiplied by the
amplitude of the Lissajous in thousands of km, and the cost per year is obtained in cm/s). TWE is the time
without eclipse after each maneuver and MC= M∗ × A is the cost of each maneuver in the cycle (as in the
average cost per year, the coefficients have to be multiplied by the amplitude in thousands of km in order to
obtain the cost in cm/s).



Chapter 3 Eclipse avoidance and impulsive transfers in Lissajous orbits 43

2.5228

5.4231

First maneuvers cost, 100R/A=30

0 1 2 3 4 5 6
0

1

2

3

4

5

6

m/s 

Figure 3.10: (left) First adjusting maneuvers cost representation (m/s per year). These maneuvers take the
satellite from the initial trajectory to the first lower tangential trajectory. Note that the darkest zones (the
cheapest) are the lower tangential trajectories, as they provide the longest time with no need for maneuvers.
(right) Time when the tangent to tangent cycle starts depending on the initial phases, which represent the
t=0 conditions (years) The darkest zones need eclipse avoidance maneuvers soon, as they represent upper
tangential trajectories.

R/A (%) ACY= K∗ × A (cm/s) TWE (years) MC= M∗ × A (cm/s)
From To Kxy Kz xy z Mxy Mz

48.53 52.18 12.688 12.966 3.778 3.889 47.939 50.428
44.81 48.52 11.099 11.376 4.030 4.132 44.732 47.009
41.10 44.80 9.664 9.931 4.282 4.375 41.380 43.449
37.30 41.05 8.358 8.609 4.534 4.618 37.894 39.758
33.50 37.28 7.164 7.394 4.786 4.861 34.286 35.947
29.65 33.45 6.067 6.274 5.037 5.104 30.566 32.027
25.80 29.64 5.056 5.260 5.289 5.347 26.747 28.021
22.00 25.75 4.122 4.276 5.541 5.591 22.842 23.905
18.02 21.90 3.256 3.380 5.793 5.834 18.862 19.717
14.15 18.00 2.452 2.551 6.045 6.077 14.821 15.504
10.20 14.10 1.704 1.776 6.297 6.320 10.733 11.224
6.30 10.15 1.009 1.053 6.549 6.563 6.610 6.910
2.80 6.26 0.362 0.379 6.801 6.806 2.465 2.577

Table 3.3: Summary of results for avoiding the exclusion zone for L2 case, using xy or z maneuvers. Same
comments as in table 3.2 apply here.
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Figure 3.11: Average cost in m/s per year with respect to the amplitude for a fixed exclusion zone. (top)
around L1 of R = 90000 km. (right) around L2 of R = 14000 km.
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Figure 3.12: Days before collision with the exclusion zone at which a xy or z-maneuver has to be performed
in order to avoid it, with respect to the amplitude of the Lissajous. (left) Orbits around L1 and exclusion
zone of R = 90000 km. (right) Orbits around L2 and exclusion zone of R = 14000 km.

Firstly, let us point out the reason for the existence of these separate groups of amplitudes.
Afterwards, the behaviour of the cost inside each of the groups will be explained.

Going back to the effective phases plane representation, there is a fixed vertical (∆ψ∗) and
horizontal (∆φ∗) distance between any pair of consecutive straight lines representing a trajectory
on a given Lissajous. This distance depends on the slope of the straight lines (ν/ω) and can be
easily computed keeping in mind that the phases Φ = 0 and Φ = 2π are identified, and the same
for Ψ. Therefore,

∆φ∗ = 2π(
ω

ν
− 1)

∆ψ∗ = 2π(1 − ν

ω
) (3.28)

If no maneuvers were ever executed, the trajectory would densely cover the torus defined by
the amplitudes of the Lissajous as time tended to infinity. So the effective phases plane would
also be densely covered. This fact changes when maneuvers are performed. In addition, as the
maneuvers we plan make the satellite enter a cycle, only some revolutions of the Lissajous are
followed. Consequently, the effective phases plane representation will only contain some straight
lines, repeated cycle after cycle. We can say that the angular distance in Φ between a point of
the cycle and the same point when the cycle crosses it again at a future moment in time is 2π.
As we consider 2-maneuver cycles, there must exist a positive integer n for which the following
identity holds:

2π = n∆φ∗ + ∆φ1 + ∆φ2 (3.29)
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where ∆φ1 and ∆φ2 represent the changes in the in plane phase caused by the eclipse avoidance
maneuvers in a cycle. It is also satisfied in our strategy that ∆φ1 = ∆φ2. So equation (3.29)
becomes,

2π = n∆φ∗ + 2∆φ (3.30)

A similar deduction can be done for the Ψ case. Therefore, we have that the jumps in the
EPP caused by the tangent to tangent cycle maneuvers are,

∆φ = π + n
∆φ∗

2

∆ψ = π +m
∆ψ∗

2
(3.31)

with n, m ∈ Z.
That is to say that the aforementioned jumps in the phases necessarily belong to the following

sets,

{∆φn}n∈Z =
{2π − n∆φ∗

2

}

n∈Z

{∆ψn}n∈Z =
{2π − n∆ψ∗

2

}

n∈Z
(3.32)

Furthermore, once the radius of the exclusion zone is fixed and we study the effective phases
plane representation of a Lissajous trajectory, the greater the amplitude of the Lissajous we
choose, the smaller the exclusion zone will seem. On the contrary, the smaller the real amplitude
of the Lissajous, the greater the relative amplitude of the exclusion zones. For a given relative
amplitude, there exists a n∗ which satisfies that ∀n < n∗ the ∆φn from equation (3.32) is large
enough to make the satellite avoid the exclusion zone when a collision occurs. Obviously, we
always use the smaller ∆φn possible, that is the one associated with n∗ is. However, if AR

is increased, a relative amplitude A∗
R > AR will be reached for which a greater jump will be

necessary if we want to avoid the exclusion zones. Even though the variation in AR can be done
in a continuous way, we have proved that the jumps belong to a discreet set. Therefore, for
A∗
R − ε the n∗ jump may be enough, while for A∗

R, the jump associated to n∗ − 1 will have to be
used. Consequently, the fact that results shown in figure 3.11 are piecewise linear is explained by
intrinsic properties of the set of possible jumps that lead to tangent to tangent cycles: each jump
in the effective phases is valid for a range of relative amplitudes. As jumps belong to a discrete
set, relative amplitudes are divided in groups for which a particular jump in the discrete set is
valid.

On the other hand, there is something more that has to be explained concerning the average
cost per year with respect to the relative amplitudes. In each group of amplitudes, the greater
the AR the cheaper the maneuvers. In order to understand this, take for instance AR1 and AR2

belonging to different groups, with AR1 < AR2 and |AR1 −AR2 | � 1 (for example, near the critic
value which separates two consecutive groups). Intuitively, we don’t need to jump much more
in an orbit of relative amplitude AR2 than of AR1 because the exclusion zones are almost of the
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same relative size. However, as we have just explained, when a jump ∆φn is no longer enough
to avoid eclipse, jump ∆φn−1, which differs from ∆φn in ∆φ∗

2
, has to be used. For AR2 , ∆φn−1 is

much bigger than necessary, and therefore more expensive. On the contrary, ∆φn is still enough
for AR1 . In general, the smallest relative amplitude of each of the groups needs maneuvers which
are relatively too big for them. That is to say that a smaller jump would suffice to avoid eclipses,
but not to enter a tangent to tangent cycle. Therefore, the bigger the amplitude in each of the
groups, the better the jump fits the requirements and, in turn, the cheaper the strategy becomes.

3.5.4 Comments on eclipse avoidance for non-square Lissajous

When Ay 6= Az, we say that the Lissajous is non-square. As a result, the exclusion zones are
no longer similar to disks in the effective phases plane, but to ellipses. If Ay is greater than Az

the horizontal diameter of these disks is shorter than the vertical one, and therefore maneuvers
to change the in plane phases are intuitively cheaper than the ones changing the out of plane
phase. Actually, differences in the cost of executing xy-maneuvers or z-maneuvers become more
significant as the difference between the two amplitudes increases. We can assert this hypothesis
by applying our strategy to non-square Lissajous. Furthermore, if Az = κAy the relation between
costs can be written:

costz ' Υκ× costxy (3.33)

where Υ ∈ [0.99,1.04] is approximately 1. Thus when amplitudes are similar, that is κ ' 1, it
doesn’t really matter which kind of maneuvers to execute (see again figure 3.9). If for example κ
is less than 1, we use z-maneuvers.
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Figure 3.13: (left) Phases plane representation of a non-square Lissajous around L1, κ = 0.5, Ay = 200×103

km. Exclusion zone with a radius of 3 degrees. (right) yz-projection of the trajectory and exclusion zone.

For non-square Lissajous, the satellite also enters a cyclic trajectory, as in the case Ay = Az.
The time without eclipse after each maneuver coincides with the time without eclipse of one of
the groups in tables 3.2 and 3.3 for xy or z maneuvers, depending on which type of maneuvers
we use. This coincidence in the time without eclipse gives us the key to compute the cost of the
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strategy, as it selects the group to which the current tangent to tangent cycle belongs. Then,
we use the amplitude corresponding to the direction in which we are performing the maneuvers,
together with the coefficient for the cost of the selected group in order to estimate the average
cost per year of the strategy. In this way, there is no need to compute new tables for non-square
Lissajous if we want to obtain good estimations of the cost.

3.5.5 Alternatives for short term spatial missions

The first thing to be taken into account concerning spatial missions with a short life time, for
instance that last for less than 10 years, is that choosing good injection phases can lead to
not having to perform any eclipse avoidance maneuver. For example, if we are interested in
maintaining a satellite around L1 avoiding the exclusion zone for about 4 or 5 years, we can study
the regions in figure 3.4 for which the first collision occurs more than 5 years after the injection.

However, if for some reason this ideal phases can’t be reached, or the mission is longer than
the maximum possible time without eclipse, at least one maneuver to avoid the exclusion zone is
required. Let us shortly present some ideas on how to choose the time for this maneuver in an
efficient way.

The criterion of aiming at a lower tangential trajectory than we have developed in the previous
sections is good for long term missions. It results in a low average cost per year, provides an easy
way of maintaining the satellite in a cycle and maximises the time without eclipse. Nevertheless,
it may not be the optimal strategy (in cost) amongst those that provide enough time without
eclipse for a short mission.

On the contrary, a natural way of choosing the maneuver time, tm, for short missions would
be to find a balance between the time without eclipse and the cost of non escape maneuvers.
Consider a time interval before the predicted collision time, say a year, and for each t in this
interval compute:

• Cost of the non escape maneuver performed at time t, to change the in plane or the out of
plane phase.

• Time until next collision if the change of phase maneuver is performed at time t. We note
this time by τ(t).

If we select the moments t such that t + τ(t) is bigger than the actual mission lifetime, this
problem becomes a one dimensional optimisation problem: among the suitable moments for the
maneuver (in terms of time without eclipse) we select the one at which the phase change maneuver
is the cheapest.

For example, let us consider a mission on a trajectory around L2 with A=120000 km and
R=14000 km, which needs 10 years without eclipse and whose injection phases are an almost
exact lower tangential point. For these conditions, the first eclipse will take place 6.3 years after
the injection. Therefore, we study the interval of time from 5.3 to 6.3 years, setting t = 0 at
the injection point. The costs and next collision times for each t ∈[5.3,6.3] are represented in
figure 3.14. In this case we need that,

t+ τ(t) ≥ 10(years).
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So the suitable times and costs are those represented in the picture on the right of figure 3.14
and one of the cheapest can be selected as the maneuver time.
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Figure 3.14: (left) x axis: Interval of possible maneuvering times before eclipse. The red curve represents
the cost in m/s of the non-scape maneuver in the z direction at each moment of time. Besides, the green
curve is the representation of the total time from injection (t = 0) to first collision with an exclusion zone, if
a non-scape maneuver was performed at each moment t (i.e. t+ τ(t)). The horizontal line at t = 10 years
shows which maneuvering times provide a time span which is long enough for the mission to be completed.
(right) Same as the picture on the left, but containing only the times for the maneuvers which allow for more
than 10 years free of eclipse time span. Among these, we would choose the points with minimum maneuver
cost, which are remarked with a square and have a cost of few cm/s.

Similar strategies for short term missions have been developed previously. For instance, see
the ones by Heppenheimer and Pernicka and Howell designed for trajectories around L1 with a
fixed duration (see [39], [62], [16]). In short, in their approach the problem is divided in three
parts: segment 1, 2 and 3. In segment 1 and 3, no maneuver is executed: the fact that some
parts of the Lissajous can be followed without eclipse is taken advantage of. In segment 2 an
eclipse avoidance strategy is implemented. Cheap z-maneuvers to change the phases maintaining
the amplitudes are planned and make the satellite describe almost circular revolutions. The way
to make the Lissajous revolutions become circular is to match the xy and z periods. For this
purpose, if the satellite jumps in the z direction velocity twice in each revolution, it skips a definite
amount of time. This is, a change in the phases yields an alteration of the natural velocity at
which the Lissajous evolves, and so it is the same as missing an interval of time (i.e. ∆t = ∆ψ/ν).

As we have seen, phase-change maneuvers which maintain the amplitude have one degree of
freedom. Either the time of the maneuver, or the phase-jump it implies can be chosen. However,
once one of them is fixed, there is only one possible maneuver. Pernicka and Howell use this, as
well as the knowledge of the total ∆ψ needed to balance the periods, to write a cost function and
minimise the ∆v expenditure in two maneuvers per revolution. As an observation, this strategy
also has a geometrical interpretation in the EPP. The two maneuvers that minimise the cost per
revolution are identical and result in a Ψ-jump which corresponds to half the vertical distance
between two consecutive straight lines of the trajectory in the EPP. Thus, what the satellite
does is to jump from one straight line to a previous one in every revolution (see figure 3.15) just
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before entering the exclusion zone. The cost of each maneuver is very low and proportional to
the Lissajous amplitude (assuming square-Lissajous). However, one of the main drawbacks of
the strategy is that it requires a great deal of maneuvers if the mission is long; approximately 4
maneuvers each year have to be planned.

Using this strategy in the long run and measuring the amplitude, A, in thousands of km, the
cost of each maneuver is 4.3 × A cm/s with an average cost per year about 17.9 × A cm/s with
maneuvers approximately every 88 days both about L1 and about L2. We note that since the
strategy consists in jumping upwards in the Ψ direction in the EPP, the cost only depends on
the amplitude, but not on the size of the exclusion zone. Comparing these costs with the results
of the tangent to tangent strategy (see tables 3.2 and 3.3) we clearly see that when the relative
amplitude is not too big (less than 60%), ours strategy is cheaper, especially if the mission is long
or if, at least, the maneuver to enter the cycle is not very expensive. That is, when the cost in
the cycles is what rules over the cost before the cycles. When the exclusion zone is more than
2/3 of the Lissajous amplitude, it becomes difficult to jump over the exclusion zones in the EPP.
Nevertheless, the Howell and Pernicka strategy is good, because it avoids the disks by performing
a lot of little maneuvers, whose costs, when added, do not exceed the cost of the big maneuver
that has to be performed in the tangent to tangent strategy.

3.6 Impulsive transfers between Lissajous orbits of differ-

ent amplitudes

So far, we have used the non escape maneuvers as a means to plan eclipse avoidance strategies.
However, remember that these maneuvers were indeed developed as a convenient way to transfer
from one Lissajous orbit to another one, avoiding unstable motions. In case we are not interested
in reaching the final Lissajous with particular in plane and out of plane phases, the optimum
maneuvering times were computed in equations (3.14) and (3.22). By evaluating the optimal cost
of the non escape maneuvers in the xy direction from (3.27), as well as z maneuvers from (3.21),
we can easily compute the minimum cost of the impulsive maneuvers to perform the required
transfers as a function of the initial and final amplitudes. These costs can be expressed in the
following way,

costyL1
= 0.37134 |A(f)

y − A
(i)

y |, costyL2
= 0.36480 |A(f)

y − A
(i)

y |,

for changing the in plane amplitude from Ai
y to Afy and,

costzL1
= 0.40123 |A(f)

z − A
(i)

z |, costzL2
= 0.39523 |A(f)

z − A
(i)

z |,

for changing the out of plane amplitude, from A
(i)

z to A
(f)

z . In the previous expressions, if ampli-
tudes are introduced in thousands of km, the cost is obtained in m/s.

Furthermore, the cost of transferring from a square Lissajous orbit with amplitudes A
(i)

y = A
(i)

z ,

to another square Lissajous of amplitudes A
(f)

y = A
(f)

z by performing separate maneuvers is
obtained by adding the costs in each direction:

costL1 = 0.77257 |A(f) − A
(i) |, costL2 = 0.76003 |A(f) − A

(i)|.



Chapter 3 Eclipse avoidance and impulsive transfers in Lissajous orbits 51

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7

A=157.000km, L1, z-strategy

A

B

B

O

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7

A=157.000km, L1, cycle to cycle z-strategy

D

O

A

B

C

-200

-150

-100

-50

 0

 50

 100

 150

 200

-50 -40 -30 -20 -10  0  10  20  30  40  50

Y
 (

x
 1

0
0

0
) 

k
m

X (x 1000) km

A=157.000km, L1, z-strategy

-200

-150

-100

-50

 0

 50

 100

 150

 200

-50 -40 -30 -20 -10  0  10  20  30  40  50

Z
 (

x
1

0
0

0
) 

k
m

X (x1000) km

A=157.000 km, L1, z-strategy

-200

-150

-100

-50

 0

 50

 100

 150

 200

-200 -150 -100 -50  0  50  100  150  200

Z
 (

x
 1

0
0

0
) 

k
m

Y (x 1000) km

A=157.000 km, L1, z-strategy

-200

-150

-100

-50

 0

 50

 100

 150

 200

-50 -40 -30 -20 -10  0  10  20  30  40  50

Y
 (

x
 1

0
0

0
) 

k
m

X (x 1000) km

A=157.000km, L1, cycle to cycle z-strategy

-200

-150

-100

-50

 0

 50

 100

 150

 200

-50 -40 -30 -20 -10  0  10  20  30  40  50

Z
 (

x
 1

0
0

0
) 

k
m

X (x 1000) km

A=157.000km, L1, cycle to cycle z-strategy

-200

-150

-100

-50

 0

 50

 100

 150

 200

-200 -150 -100 -50  0  50  100  150  200

Z
 (

x
 1

0
0

0
) 

k
m

Y (x 1000) km

A=157.000km, L1, cycle to cycle z-strategy

Figure 3.15: Comparison between the tangent to tangent cycle and the Pernicka and Howell strategy, for for
an orbit with A = 157000 km and R = 90000 km about L1. The first row shows the representation of both
strategies in the EPP (left: Pernicka and Howell, right: tangent to tangent cycle). In the second row, the
xy, xz and yz projections of the trajectory on the Lissajous are shown for the Pernicka and Howell strategy.
Departing from a tangent trajectory at O, the satellite evolves till just before entering the exclusion zone,
then it enters in a cycle with two z-maneuvers per revolution (four per year). The maneuvers are applied in
two different places, A and B, and the jump in the Ψ direction in each place is one half of the Ψ-distance
between two consecutive lines in the EPP corresponding to the same natural motion. The final cycle is seen
like an ellipse about the exclusion zone. Maneuvers are stopped when the remaining time without eclipse is
enough to finish the mission. In the third row, the corresponding plots using the tangent to tangent eclipse
avoidance strategy with z-maneuvers are shown. Each cycle closes with a maneuver at A or C which jumps
to B or D respectively. The whole pattern repeats again after two cycles. In both cases the places of the
maneuvers are marked with a small box.
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3.6.1 Combined maneuvers

We call combined maneuver to a maneuver executed at a given moment of time t, which is the
addition of the corresponding in plane non escape maneuver and a maneuver in the z direction.
That is to say, the 3 components of the velocity vector are changed at the same time.

According to the parallelogram law, the cost of a combined maneuver at time τ is always less
or equal than the addition of the costs of two separate maneuvers, in the xy and z directions at
the same moment of time τ ,

Cτ
combined = Cτ

xy+z ≤ Cτ
xy + Cτ

z ,

and the absolute minimum of the cost of a combined maneuver is reached when the optimal times
in each direction coincide.

In the EPP, the optimal times for the xy maneuvers are seen as the vertical lines Φ = β+ π
2

and
Φ = β + 3π

2
. Respectively, for z maneuvers, the optimal times are represented by the horizontal

lines Ψ = π
2

and Ψ = 3π
2

. These optimal times coincide at the four intersections between the
aforementioned straight lines. However, note that when this happens, the points are either inside
the exclusion zone or very close to it. This fact makes them not usable as amplitude change
locations, in our eclipse avoidance philosophy.

It is natural to wonder now at which moments of time a single combined maneuver would
improve the results of changing the amplitudes separately. Let Cs be the sum of the minimum
possible costs for a change of amplitudes from square Lissajous to square Lissajous with separate
maneuvers at their optimal times. Let Cc(τ) be the cost of performing the same change in the
amplitudes by executing a single combined maneuver at time τ . By an improvement we mean
the moments of time when Cc(τ) < Cs. When this happens, we define,

I(τ) = 100 × Cs − Cc(τ)

Cs
,

the percentage of improvement of a combined maneuver over the two separate optimal maneuvers.
Obviously, the maximum of this improvement I(τ) is achieved in each one of the four intersections
between Φ = β + 3π

2
, Φ = β + π

2
, and Ψ = π

2
, Ψ = 3π

2
. So, the upper bounds for I(τ) computed

at these intersections are,

max
L1

I(τ) = 29.23642 %, max
L2

I(τ) = 29.23266 %.

3.6.2 Increasing the size of a Lissajous orbit using a combined ma-
neuver

As we saw in section 3.6, enlargement maneuvers can be performed at any moment of time.
However, I(τ) is not positive at all points of the effective phase plane. Moreover the improvement
depends on the ratio Af/Ai.

As an example, figure 3.16 shows which are the effective phases where executing a combined
maneuver leads to an improvement in cost for a 100% enlargement of a 120000 km square Lissajous
around L1. White zones are either exclusion zones, which we do not consider as valid phases, or
phases where it is cheaper to make the transfer using two maneuvers. The behaviour is similar for
a transfer in the vicinity of L2 as we can see in the same figure where we represent a transfer from
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Figure 3.16: (left) I(τ) for each point (Φm,Ψm) when a combined maneuver is used to enlarge a square
Lissajous orbit. (right) detail of the left figure around an exclusion zone. (top) case example around L1

from 120000 km to 240000 km amplitude. (bottom) Case example around L2 from 70000 km to 140000 km.
Dotted lines in the figures represent the optimal places for the maneuvers to reduce the in-plane or out-of-plane
amplitudes.
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70000 km to 140000 km square Lissajous of amplitude (again a 100% enlargement). Note that
the improvement essentially depends on the distance to the intersection between the vertical and
horizontal dotted lines which correspond to the optimal places for the separate maneuvers. An
example of the profile of the improvement function along the optimal coordinate lines is displayed
in figure 3.17.

Other enlargements would have similar pictures, with regions surrounding the exclusion zones
as the best improvement rate zones. The maximum % of improvement is around 30%, which
represents a significant reduction in cost.
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Figure 3.17: Profiles of the improvement of cost function along the lines of optimal places for in-plane or
out-of-plane maneuvers. Left, along the Φ phase. Middle, along the Ψ phase and right, superposition of
both plots. The zero value corresponds to the intersection point of the optimal lines and the vertical dotted
lines mark the exclusion zone. The example corresponds to the enlargement maneuver of a square Lissajous
around L1 from 120000 km to 240000 km.

3.6.3 Reducing the size of a Lissajous orbit using a combined maneu-

ver

The reduction of the amplitude of the Lissajous is constrained. According to (3.13) and (3.20)
separated transfer maneuvers in the xy and z directions are only possible at some time intervals.
That is, for some values of the effective phases. More precisely, for each Af/Ai ratio, the effective
phases (Φm,Ψm) for which a combined maneuver is possible are the ones that satisfy,

| cos(Ψm)| < Af

Ai
, | cos(Φm − β)| < Af

Ai
, (3.34)

which essentially express the idea that, just by moving the velocity, one cannot jump from a
pendulum oscillation with a certain amplitude to a smaller one when the pendulum is above the
required small amplitude.

These pair of equations define two vertical and two horizontal strips, in whose intersection
we find the possible effective phases where to perform the transfer maneuver. The more we want
to reduce the Lissajous size, the thinner the strips are, and the other way round, as we see in
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figure 3.18. In this figure we also observe that the permitted regions always interfere with the
exclusion zones. This fact reduces even more the possible places for the maneuver, as we will
never use phases inside the exclusion zones as maneuver phases.

The maximum reduction rate (MRR) defined as the maximum value of (Ai − Af )/Ai for a
given pair of effective phases can also be computed using the equations (3.34). In percentage,
this value is given as,

MRR(Φ,Ψ) = 100 × [1 − max(| cos(Ψ)|, | cos(Φ − β)|)],

and it is represented in figure 3.19, both around L1 and L2.
As it was observed for enlargement maneuvers, the zones in the EPP which produce a greater

improvement in cost are those surrounding the exclusion zones. So again, either upper or lower
tangential points seem to be good places to execute a combined maneuver as shown in figure 3.20.
However, as the reduction rate increases, the possible effective phases for a combined maneuver
become more restricted. It is even possible that for certain reduction rate and relative amplitude,
all (or almost all) the effective phases where a combined maneuver is permitted are inside the
exclusion zones. Therefore, it is worth commenting here how these reduction and enlargement
maneuvers can be combined with eclipse avoidance strategies.

3.6.4 Eclipse avoidance in combined maneuvers to change the ampli-

tude

Both the departure and the arrival orbit of the impulsive transfers that we have explained are
Lissajous type orbits. Therefore, after the transfer, we do not have to worry about occultations
anymore, as the tangent to tangent cycle can be applied to the new orbit. However, in our eclipse
avoidance philosophy, it is not acceptable to have an eclipse during the transfer. Therefore,
we should look for initial transfer conditions which are not only good in terms of cost but also
maintain the satellite beyond distance R (radius of the exclusion zone) from the Sun-Earth x
axis. That is to say we do not have to plan a new type of amplitude change transfers; we just
take advantage of the ones that provide a cheap transfer without violating the exclusion zone.

Again, the EPP representation can help us in the mission design. Given initial and final
amplitudes, Ai and Af , we want to know whether there exist initial conditions for a transfer from
square Lissajous with amplitude Ai to square Lissajous with amplitude Af , such that:

a) The transfer trajectory does not violate the exclusion zone.

b) The maximum possible improvement in the total cost provided by a combined maneuver is
achieved.

For the first condition, we fix an exclusion radius of 90000 km around L1 and 14000 km around
L2. Then, given initial and final amplitudes, we compute the transfer trajectory for each pair of
initial phases and the distance to the Sun-Earth x axis at each point of this trajectory. If this
distance is less than the fixed radius at some point, it means that the exclusion disk is crossed
during the transfer. So, the corresponding initial phases are considered to be not usable for our
purposes. For instance, see figure 3.21, where the minimum distance to the x axis for the transfer
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Figure 3.18: Possible (Φm,Ψm) where a combined maneuver can give a certain reduction of the Lissajous
amplitude. Represented reductions (Ai−Af )/Ai of 10%, 25%, 50% and 75% from top left to bottom right.
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Figure 3.19: Maximum possible reduction of the amplitude using a combined maneuver, as a function of
the effective phases. Right, L1 case. Left, L2 case.
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Figure 3.20: I(τ) for two examples of reduction of amplitude. Left, from 300000 km to 150000 km
amplitude square Lissajous about L1 (50% of reduction). Right, from 120000 km to 80000 km amplitude
square Lissajous about L2 (33% of reduction). The profiles of the function along the optimal coordinate lines
look similar to the ones in figure 3.17 and are not displayed.



Chapter 3 Eclipse avoidance and impulsive transfers in Lissajous orbits 58

trajectory going from a square Lissajous of Ai
y=300000 km to another Lissajous of Af

y=450000 km
around L1 is displayed. The white strips which are tangential to the upper part of the exclusion
zones represent the points for which an eclipse occurs during the transfer.
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Figure 3.21: Minimum distance from the x-axis to the transfer trajectory in a 50% enlargement of a Lissajous
around L1

These studies of exclusion zone violation can be combined with the ones concerning the im-
provement in cost of performing a combined maneuver. That is, we reduce the search zone to
the initial phases that we already know that produce a reduction of the costs when a combined
maneuver is performed. Among these phases, it is just a matter of selecting the places where the
maximum time without hitting the exclusion zone is enjoyed when the transfer is performed. A
couple of examples are represented in figure 3.22. In these figures we represent the time without
crossing the L2 exclusion zone (14000 km) as a function of the effective phase where we perform
the maneuver. The darkest zones are the most convenient in terms of time free of eclipse. Besides,
the best improvement in cost occurs when the maneuver is executed close to the intersection of
the vertical and horizontal dotted lines. Therefore, optimal places for the transfer are the darkest
points which are closest to these intersections.

Furthermore, in figure 3.23 we present an example of an enlargement of a square Lissajous
around L2, from Ai=80000 km to Af=120000 km. The transfer can be done by using two
maneuvers at their optimal moments (figure 3.23 first row) or by choosing a couple of maneuvering
phases inside the darkest zone of the picture on the right in figure 3.22, and perform the transfer
using a combined maneuver. We can see how the non violation of the exclusion zone is satisfied
in both cases, but the cost is reduced around 20% when a combined maneuver is used.

If a particular study for each case can’t be done, points in lower tangential trajectories should
be used, as they satisfy both requirements: give good improvement rates for combined maneuvers,
as well as provide plenty of time without eclipse to perform the transfer.
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the amplitude of a square Lissajous. Both examples are details of an exclusion zone in the EPP for the L2 case
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Figure 3.23: Example of a transfer from a square Lissajous about L2 with A = 80000 km to A = 120000 km.
Top, using two separate maneuvers at the optimal places with total cost 30.33 m/s. Bottom, using an optimal
combined maneuver with cost 23.33 m/s. A 20.79% of improvement in the delta-v cost. Maneuvers are
marked with a box.
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3.7 Rendez-vous

In sections 3.5 and 3.6 the effective phases plane has been used in order to plan eclipse avoidance
maneuvers and impulsive transfers between Lissajous of different sizes. These are two very impor-
tant problems that may have to be faced when designing missions around libration points that use
Lissajous type orbits as their nominal trajectory. Nevertheless, there is still another important
topic to be addressed, which is the rendez-vous between different satellites in the same Lissajous
orbit. The rendez-vous of different satellites in the frame of the restricted three body problem is
a relatively unexplored area ( [46]). In this section we present rendez-vous strategies developed
by using the effective phases plane (EPP), which has proved, once more, to be an efficient and
easy to use design tool.

3.7.1 Rendez-vous maintaining the amplitudes

Let us assume we have inserted a pair of satellites in a Lissajous orbit. The position of each
one of the satellites is defined, as usual, by the hyperbolic coefficients A1 and A2 (equal zero);
the central part amplitudes Ax and Az (the same for both of the satellites, related to the Jacobi
constant) and the phases. If the satellites are on the same Lissajous, the 4 amplitudes are the
same, being A1 = A2 = 0, and so their positions only differ in the phases (in plane and/or out of
plane).

We will note (φ1
i , ψ

1
i ) and (φ2

i , ψ
2
i ) the initial phases for satellites 1 and 2 respectively. Our

goal is to make them meet at some other phases, at some time tr in the future, using impulsive
maneuvers with an affordable cost.

The maneuvers will be executed in the non escape direction. Remember that when amplitudes
don’t change, the jump in the phases that these maneuvers cause is:

φf − φi = −2(ωtm + φi − β)
ψf − ψi = −2(νtm + ψi)

(3.35)

where tm is the time for the maneuver, φi and ψi the phases at t=0, and β is a constant angle
depending on the mass parameter. The resulting phases after the maneuver are:

φm = φf + ωtm
ψm = ψf + νtm

(3.36)

Using the definition of the effective phases,

(Φ(t;φi),Ψ(t;ψi)) = (φi + ωt, ψi + νt),

equations (3.35) can be rewritten as,

∆Φ = −2Φ(tm;φi) + 2β
∆Ψ = −2Ψ(tm;ψi)

(3.37)

In the linear part of the equations, the movement in the xy-plane (ecliptic or in-plane) and in
the z-plane (out-of-plane) are completely uncoupled. We have seen in section 3.6 that combined
maneuvers (i.e. maneuvers that simultaneously change ẋ, ẏ and ż) are convenient in some cases,
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Figure 3.24: Effective phases plane representation of one satellite chasing the other.

as they have a cost which is lower than the addition of two separate maneuvers in the in plane
and out of plane velocities. In this part of the work, however, separate maneuvers will be used.
The reason is that there is little freedom in choosing the jump in each of the phases necessary for
the rendez vous to take place. This fact implies that the time for the maneuvers is also strongly
constrained (see equation (3.35)). Therefore, in plane and out of plane maneuvers will probably
be performed at different times, excluding the possibility of a combined maneuver. In fact, in
the cases where combined maneuvers were used for size reduction or enlargement maneuvers no
attention was payed to the final arriving phases and this is not the case now.

One satellite chasing the other

An immediate solution to the problem of making two satellites meet is letting one of them follow
its way unperturbed along the Lissajous, and planning maneuvers on the other one.

According to equation (3.35), there is only one possible jump in each direction at each moment
of time. And the other way round, once the jump has been fixed, the time cannot be chosen. In
our case, the jump in the phases is clearly determined: we want to jump from one trajectory to
the other one. Therefore, the equations to be solved are,

φ2
i = φ1

f = −φ1
i − 2ωtxym + 2β (mod 2π)

ψ2
i = ψ1

f = −ψ1
i − 2νtzm (mod 2π).

So,

txym =
β

ω
− φ2

i + φ1
i

2ω
+
kπ

ω
and tzm = −ψ

2
i + ψ1

i

2ν
+
κπ

ν
(3.38)

where k, κ ∈ Z can be used to adjust the times to mission requirements (i.e. positive, close to
each other. . . ).



Chapter 3 Eclipse avoidance and impulsive transfers in Lissajous orbits 63

The cost of one satellite chasing the other is proportional to the initial differences in phases.
The closer to 0 or to 2π that the difference |φ1

i −φ2
i | is, the cheaper the maneuvers in xy. For the

z-maneuvers, the same with ψ.
Particularly, the cost of the xy-maneuvers can be measured by the size of α,

αxy(φ
1
i , φ

2
i ) = 2Ax|sin(φ1

i + ωtxym − β)| = 2Ax

∣

∣

∣
sin

(φ1
i − φ2

i

2

)∣

∣

∣
. (3.39)

And by using this expression for αxy, the final cost for the in plane maneuver can be computed
as,

costxy = αxy(φ
1
i , φ

2
i )

√

d2
2 + κ2d2

1

c2 + κ2
,

where d1, d2, c and κ are constants depending on the mass parameter.
The cost of the z-maneuvers is,

costz(ψ
1
i , ψ

2
i ) = 2Az|sin(ψ1

i + νtzm)| = 2Az

∣

∣

∣
sin

(ψ1
i − ψ2

i

2

)∣

∣

∣
. (3.40)

So both costxy and costz are maximum when the differences between the initial phases are
around π.
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Figure 3.25: Cost of the persecution maneuvers depending on the difference between the initial phases (in
red, costs for L1 Lissajous and in blue costs for the L2 Lissajous). The cost in m/s is proportional to the
amplitude. It is shown in the figure for amplitude equal to 100000 km. Therefore, the cost for another
Lissajous amplitude is easily computed by diving the costs shown in the figure by 105 and multiplying by the
actual amplitude.

On the other hand, the time for performing the maneuvers in xy depends on 1
2
(φ1 + φ2).

Respectively for z maneuvers, the time depends on 1
2
(ψ1 + ψ2) as shown in equation (3.42).
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Figure 3.26: First row: xy, xz and yz projections of the one satellite following the other strategy for rendez-
vous. Ay = Az=140,000 km around L2. Second row: xy, xz and yz projections of the four maneuvers
strategy for a Lissajous around L1, Ay = Az=200,000 km.
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Therefore, a natural way of representing the time between maneuvers is as a function of these semi-
summations. For the xy maneuvers, there is another parameter playing a role in the computation
of the time, which is β. Figure 3.27 shows the representation of the time between maneuvers
depending on the initial phases of both satellites. Values on the x-axis correspond to φ1 + φ2,
while the values on the y-axis are ψ1 + ψ2. We can see how both directions show 2π periodicity,
justified by equation (3.42), (in x the base interval is [2(π+β),2(2π+β)], due to the aforementioned
role of β).

To sum up, no more than 50 days will be necessary in any case between one maneuver and the
other one. The worst case is when the differences in phases are around 2π (despite being cheap
in ∆v). The general case, with initial differences in phases being less than π, corresponds to a
waiting time between maneuvers of 10 to 25 days.
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Figure 3.27: Time between maneuvers (in days) depending on φ1 + φ2 (x-axis) and ψ1 + ψ2 (y-axis).

Note that all the formulae used so far are symmetric with respect to the conditions (φ1
i , ψ

1
i )

and (φ2
i , ψ

2
i ). Consequently, there is absolutely no difference in choosing one satellite or the

other as the one to perform the maneuvers. A combined strategy of one satellite maneuvering
in one direction and the other satellite in the other direction will also lead to exactly the same
results, both in terms of times and costs (switch 1 for 2 in equations (3.38), (3.39) and (3.40)).
The choice may have to be made in response to some other criteria, such as the feasibility of
performing maneuvers in a particular direction with each of the satellites, or the advantage of
splitting the propellant load between them.
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Intermediate meeting trajectory

One can think of adding a degree of freedom to the problem by executing maneuvers on both the
satellites and making them meet in a trajectory which is neither the one that the first satellite
follows nor the one for the second satellite. The procedure for minimising costs could take
advantage of this degree of freedom in order to plan a cheaper rendez-vous. What will turn
out, however, is that the new strategy will not yield a reduction in costs but more flexible time
intervals for the maneuvers.

Remember once again that Lissajous orbits are seen as straight lines of constant slope ν/ω in
the effective phases plane. So, what makes one trajectory different to the others in each of the
straight lines of the EPP is the pair (φi, ψi). Performing maneuvers on both the satellites will
result in the meeting taking place at a trajectory of the EPP different from the starting ones.
That is, in a trajectory with different (φ̄i, ψ̄i). We refer to this new trajectory as the intermediate
trajectory. When this intermediate trajectory has been chosen, the idea is to use the persecution
strategy explained in section 3.7.1 twice. That is to say, making the first satellite chase the
intermediate trajectory and the second one too. Given (φ1

i , ψ
1
i ) and (φ2

i , ψ
2
i ) the initial phases for

the satellites, we have to determine (φ̄i, ψ̄i) in such a way that the resulting maneuvers are as
cheap as possible.

Let t1xy, t
2
xy be the times for the maneuvers in xy, one time for each satellite, and t1xy < t2xy.

The same for the z maneuvers, with times t1z, t
2
z satisfying t1z < t2z. For all we know about non

escape maneuvers in the EPP, it is not difficult to prove that t2xy depends on t1xy and t2z on t1z. The
total jumps in the EPP needed for the rendez-vous are |φ1

i −φ2
i | and |ψ1

i −ψ2
i |. When a maneuver

in one of the directions is executed, part of the jump is performed. Therefore, by subtracting
the part that has already been jumped from the total necessary change in phase, we obtain the
jump that the second maneuver has to achieve. Due to the correspondence between times and
jumps, knowing which is the necessary change in the phases leads to computing t2xy and t2z. In
more detail, according to equation (3.35) and with the current notation we have,

φ1
f = −φ1

i − 2ωt1xy + 2β
φ2
f = −φ2

i − 2ωt2xy + 2β
ψ1
f = −ψ1

i − 2νt1z
ψ2
f = −ψ2

i − 2νt2z.

(3.41)

And we want the following to be true,

φ1
f = φ2

f = φ̄i and ψ1
f = ψ2

f = ψ̄i.

So, equating in (3.41) we get that,

t2xy = t1xy +
(φ1

i −φ2
i )

2ω
+ kπ

ω

t2z = t1z +
(ψ1

i −ψ2
i )

2ν
+ κπ

ν
.

(3.42)

where k, κ ∈ Z.
To sum up, introducing an intermediate meeting trajectory (φ̄, ψ̄) provides us with a degree of

freedom in the xy direction (the time t1xy) and another one in the z direction (the time t1z). Once
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these times have been fixed, the corresponding ones for the second satellite will also be determined.
Thus, the whole strategy depends on the times for the first maneuver in each direction.

We will study the cost function in the xy direction and in the z direction of this strategy,
which consists of 4 maneuvers.

Using the expressions in (3.39) and (3.40), we have that,

ᾱxy(φ
1
i , φ

2
i ) = αxy(φ

1
i , φ̄) + αxy(φ

2
i , φ̄)

ᾱz(ψ
1
i , ψ

2
i ) = αz(ψ

1
i , ψ̄) + αz(ψ

2
i , ψ̄).

(3.43)

In fact, these expressions can be written in terms of time. Using the relations between the
time for the maneuvers on satellite 1 and 2 (3.42) we have,

ᾱxy(φ
1
i , φ

2
i , φ̄) = 2Ax(|sin(φ1

i + ωt1xy − β)| + |sin(φ2
i + ωt2xy − β)|) = (3.44)

= 2Ax

(

|sin(φ1
i + ωt1xy − β)| +

∣

∣

∣
sin

(

φ2
i + ω

(

t1xy +
φ1
i − φ2

i

2ω

)

+ kπ − β
)∣

∣

∣

)

=

= 2Ax(|sin(Φ1 + ωt1xy)| + |sin(Φ2 + ωt1xy)|).

where Φ1 = φ1
i − β and Φ2 = −β + (φ1

i + φ2
i )/2.

As we already know, the degree of freedom is represented by the time for the maneuver on
the first satellite. Particularly, the cost is equal to adding the absolute values of two sinus of the
same amplitudes (Ax) and frequencies (ω), but different phases.

Analogously for the z maneuvers we have,

ᾱz(ψ
1
i , ψ

2
i , ψ̄) = 2Az(|sin(ψ1

i + νt1z)| + |sin(ψ2
i + νt2z)|) = (3.45)

= 2Az

(

|sin(ψ1
i + νt1z)| +

∣

∣

∣
sin

(

ψ2
i + ν

(

t1z +
ψ1
i − ψ2

i

2ν

)

+ κπ
)∣

∣

∣

)

=

= 2Az(|sin(Ψ1 + νt1z)| + |sin(Ψ2 + νt1z)|).

where Ψ1 = ψ1
i and Ψ2 = (ψ1

i + ψ2
i )/2.

Again, the cost depends on the time for the maneuver on the first satellite.
When trying to minimise (3.44) as a function of t1xy and (3.45) as a function of t1z, we get that

the minimum occurs when one of the absolute values inside the summation is equal to zero. That
is, when only one satellite is affected by a maneuver. So, the minimum possible cost when using
the intermediate meeting trajectory coincides with the cost of the so-called one satellite chasing
the other strategy.

In figure 3.28 the absolute value of two sinus, with a slight difference in the phases, and
the resulting function of adding them have been represented. The addition of two sinus with
different initial phase corresponds to the total cost in each direction of the intermediate meeting
trajectory. Therefore, this picture shows in a graphic way what we have already stated: using
this 4-maneuvers strategy doesn’t yield an improvement in terms of costs. However, one can see
that in the time interval going from the zero value of one of the sinus and the zero value of the
other one, the cost does not vary very fast. In this interval, the cost is almost constant and equal
to the absolute minimum. It slightly increases when approaching the middle of the interval, and
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Figure 3.28: Representation of the absolute values of two sinus, with a small difference in the initial phases,
and the function which results of adding them.

then decreases the same way. The local maximum reached in the middle of the aforementioned
interval differs from the absolute minimum in a proportional way to the differences between the
initial phases of the satellites. Again, the worst case is when the difference in phases at t = 0 is
close to π, because the resulting local maximum in the middle of the aforementioned interval is
quite different form the absolute minimum. Therefore, not all the times in the interval between
two different minima are usable if we want to maintain a low cost (see figure 3.29).

The comparison between the minimum cost (i.e. strategy one satellite chasing the other) and
the local maximums we have explained for the 4-maneuver strategy is depicted in figure 3.30.

From this results we can conclude that performing maneuvers on both satellites to make them
meet in an intermediate trajectory is not advantageous in terms of cost, but provides the mission
designer with more freedom when it comes to choosing the times for the maneuvers, with no
significant increase in the cost.

3.7.2 Rendez-vous with amplitude change

Given two sets of initial conditions of the form,

(Ay1, A
z
1, φ1, ψ1) and (Ay2, A

z
2, φ2, ψ2),

representing the positions of two satellites on different Lissajous orbits, one can think of different
forms to plan a rendez-vous using non escape maneuvers and the EPP.

To start with, amplitude reduction (or enlargement) maneuvers can be planned to make both
satellites orbit the same Lissajous. Afterwards and in an independent way, one of the strategies
for rendez-vous using the EPP can be applied to make them meet. Another possibility is to apply
maneuvers in the non escape direction, but changing the amplitudes and the phases simultaneously
in a convenient way for the rendez-vous.
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Figure 3.29: Representation of the absolute values of two sinus, with a difference in the initial phases of
around π radians, as well as the function which results of adding them.
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Figure 3.30: This figure shows, proportionally, the difference in cost between the absolute minimum for the
rendez-vous (green) and the local maximum of the costs in the interval between two consecutive minimums
in figures 3.28 and 3.29 (red), as a function of the initial difference in phases. The left picture shows this
relation for the in plane phases, while the picture on the right for the out of plane phases. It is clear from
these figures that in the worst case, when the initial phases differ in π radians, the local maximum is about
40% more expensive than the absolute minimum.
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These two possibilities do not have to be regarded necessarily as different ways of approaching
the rendez-vous problem, but rather as complementary to each other. For instance, when the
satellites are in Lissajous orbits of substantially different amplitudes, an impulsive amplitude
change may be considered. In case this amplitude change is done with a small % of error, the
rendez-vous then has to take place between two Lissajous orbits of slightly different amplitudes.
In this case, simultaneous amplitude and phase changes are perfectly suitable. Both approaches
are discussed in the following sections.

Independent amplitude change and EPP rendez-vous

If we choose to apply the amplitude changes independently from the phase changes, we should
start by planning the cheapest possible amplitude changes. Afterwards, once the satellites are
both on the same Lissajous orbit, one of the strategies in section 3.7.1 can be applied.

The cost for the rendez-vous in phases is proportional to the amplitude. Thus, a priori, it is
better to perform it in a Lissajous orbit such that,

Afy = min(Ay1, A
y
2) , Afz = min(Az1, A

z
2). (3.46)

However, if this choice of the final amplitudes is not allowed by mission requirements, the
rendez-vous will be performed in the most favourable possible Lissajous orbit. Once the initial
and final amplitudes have been chosen, optimal maneuvers for the amplitude changes can be
planned (see section 3.6). Furthermore, it is easily proved that when the amplitude changes are
performed at the moment of minimum cost, the phases do not change. ( For instance introducing

α(tm) = A
(i)

x − A
(f)

x and ωt − β = π
2
− φi in equation (3.16) we get that cos(φf )=cos(φi) and

sin(φf )=sin(φi).) Therefore, not only can amplitude and phase changes be planned independently,
but also there is not a required order for the execution of the maneuvers.

Nevertheless, there is a detail which has to be taken into account concerning the rendez-vous
with amplitude change. Note that amplitude change and rendez-vous maneuvers can only be
executed in an independent way if the changes in the amplitude only refer to the out of plane or z
amplitude. Otherwise, a maneuver in the xy non escape direction would introduce exponentially
decreasing hyperbolic terms (A2), which make equation (3.35) no longer the correct expression
for the jump in the xy phases, as this equation assumes A1 = A2 = 0.

It may also be convenient for operational reasons to simultaneously change the amplitudes and
the phases. It is natural, for instance, to consider the case when the satellites have been inserted
into Lissajous orbits with slightly different amplitudes. A new study including maneuvers which
simultaneously change amplitudes and phases will be performed in the following section.

Simultaneous amplitude change and rendez-vous

Let us define ∆Ax = A
(f)

x − A
(i)

x . We will use expansions in ∆Ax up to order one. The terms
O((∆Ax)

2) are neglected, as ∆Ax is assumed to be sufficiently small.
For a given moment of time, we can look at the expression of the cost coefficient for in plane

maneuvers, α, from equation (3.13) as a function of A
(f)

x = ξ,
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α(t, ξ) = A
(i)

x sin (ωtm + φi − β) ±
√

ξ2 − A(i)

x

2
cos2 (ωtm + φi − β)

with the positive sign corresponding to the non-trivial maneuver when ξ = A
(i)

x . This is the sign

we adopt, as we will look for small amplitude changes (i.e. ξ ≈ A
(i)

x ).
Then, we can expand α(t, x) in powers of ∆Ax,

α(t, A
(i)

x + ∆Ax) = α(t, A
(i)

x ) +
∂α(t, ξ)

∂ξ
(A

(i)

x )∆Ax +O((∆Ax)
2).

So,

α(t) = 2A
(i)

x sin(ωt+ φi − β) +
A

(i)

x
√

(A(i)

x )2 − (A(i)

x )2cos2(ωt+ φi − β)
∆Ax +O((∆Ax)

2)

α(t;A
(i)

x ,∆Ax) ≈ 2A
(i)

x sin(ωt+ φi − β) +
∆Ax

sin(ωt+ φi − β)
. (3.47)

If we introduce this expression of α(t;A
(i)

x ,∆Ax) in equations (3.15), after some algebra we
get,

tgφf = −A
(i)

x sin(2ωt+ φi − 2β)sin(ωt+ φi − β) + ∆Axcos(ωt− β)

A(i)

x cos(2ωt+ φi − 2β)sin(ωt+ φi − β) − ∆Axsin(ωt− β)
. (3.48)

The moments t which satisfy (3.48) are the times for a xy maneuver which simultaneously

changes φi to φf and A
(i)

x to A
(f)

x . This expression can be simplified by defining Φt = ωt − β.
Then, (3.48) takes the form,

tgφf = −A
(i)

x sin(2Φt + φi)sin(Φt + φi) + ∆Axcos(Φt)

A(i)

x cos(2Φt + φi)sin(Φt + φi) − ∆Axsin(Φt)
. (3.49)

Note that φi, φf , A
(i)

x and A
(f)

x are known. The value of A
(i)

x is the in plane amplitude of the

initial Lissajous orbit. Besides, A
(f)

x is given by the in-plane size of the Lissajous orbit on which
the rendez-vous takes place. In turn, phases φi and φf correspond to the in plane phases of the
satellites at the time we choose as origin (t = 0), being φi the phase of the satellite that jumps
and φf the phase of the satellite that is chased. Moreover, one has to be careful when solving
equation (3.49), as φf appears in it only through its tangent, which can lead to wrong solutions
due to the fact that φf and φf + π have the same tangent but solutions using φf + π do not
result in the desired rendez-vous. In addition, equation (3.49) is not numerically convenient when
φf ≈ π

2
or φf ≈ 3π

2
(as in these cases cosφf < ε). We can simply use the equation for the cotangent

of φf , instead of the tangent, when necessary,

cotgφf = −A
(i)

x cos(2Φt + φi)sin(Φt + φi) − ∆Axsin(Φt)

A(i)

x sin(2Φt + φi)sin(Φt + φi) + ∆Axcos(Φt)
.
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On the other hand, we have seen that it is possible to perform independent phase and am-
plitude changes in the out-of-plane direction, in order to plan a rendez-vous. However, a power
expansion method like the one used for xy maneuvers can also be developed in this case.

Let us define ∆Az = A
(f)

z −A(i)

z . By proceeding analogously than for the xy case we have that,

αz(t;A
(i)

z ,∆Az) =
∆ż

ν
≈ 2A

(i)

z sin(νt + ψi) +
∆Az

sin(νt + ψi)
. (3.50)

So, by using the expressions,

Af5 = A
(f)

z cos(ψf ) and Af6 = −A(f)

z sin(ψf)

and,

Af5 = A
(i)

z cos(ψi) −
∆ż

ν
sin(νt) and Af

6 = −A(i)

z sin(ψi) +
∆ż

ν
cos(νt),

we finally get that,

tgψf = −A
(i)

z sin(2νt + ψi)sin(νt + ψi) + ∆A
(i)

z cos(νt)

A(i)

z cos(2νt + ψi)sin(νt + ψi) − ∆A(i)

z sin(νt)
. (3.51)

Same comments as for equation (3.48) apply here, concerning the initial and final amplitudes
and phases. When ψf is close to π

2
or 3π

2
, the alternative equation for the computation of the

maneuver time is the following,

cotgψf = −A
(i)

z cos(2νt + ψi)sin(νt + ψi) − ∆A
(i)

z sin(νt)

A(i)

z sin(2νt + ψi)sin(νt + ψi) + ∆A(i)

z

.

Both equation (3.49) and equation (3.51) are transcendental equations, and therefore iterative
numerical methods are needed to solve them.

Comparison between the two strategies for rendez-vous with amplitude change

The method that has been developed in the previous section for simultaneous amplitude and
phase changes is valid as long as the amplitude change is small. Consequently, in terms of costs
and times it is essentially the same as the rendez-vous without amplitude change, being the cost
proportional to the initial amplitude and maximum when the initial phases of the satellites are
opposed, i.e. φf = φi + π (see figure 3.31, which shows the costs of changing from an amplitude
of 100000 km to 100125 km depending on the difference in the phases at t = 0 and compare it to
figure 3.25, which corresponds to the same phase changes but with no amplitude change).

On the other hand, given a couple of amplitudes A1 and A2, with A1 > A2, the optimal am-
plitude reduction from A1 to A2 has exactly the same cost as the optimal amplitude enlargement
from A2 to A1 (because this cost is proportional to |A1 − A2|, see section 3.6). However, once in
the final orbit, the smaller the amplitude the cheaper the phase change maneuvers of the EPP
rendez-vous. Therefore, if the final orbit is the one with the smallest amplitude, the rendez-vous
becomes globally cheaper. This is the reason why the maneuvers with negative % of amplitude
change in tables 3.4 and 3.5 are always cheaper than the ones with positive %.
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Figure 3.31: Cost of the simultaneous maneuvers of phase and amplitude change for the rendez-vous. The
original orbit is a square Lissajous with amplitudes Ay = Az = 105 km, and the amplitude change is an
enlargement of the 1%. In the x axis of the figure the initial differences in phases are represented, while the
y axis contains the costs of the rendez-vous in m/s.

Moreover, if the amplitudes are substantially different, independent amplitude and phase
changes have to be applied. The total final cost can be computed by adding the optimal amplitude
change cost (see section 3.6) and the EPP rendez-vous cost (see section 3.7.1). However, one
has to take into account that when performing in-plane amplitude change maneuvers, stable
hyperbolic terms may appear, placing the satellite in the stable manifold of the final Lissajous
rather than on the orbit itself. Consequently, the phase change maneuver has to be planned
at some time in the future when this aforementioned exponentially decreasing term will have
vanished.

To sum up, when both amplitudes are very close to each other and the rendez-vous essen-
tially requires a change in the phases, simultaneous amplitude and phase change maneuvers are
advisable. Among the advantages of using the simultaneous change strategy we have the obvi-
ous simplicity of performing one maneuver instead of two maneuvers at different times, and the
fact that the problems yielding from the hyperbolic stable terms that appear when changing the
in-plane amplitude are avoided when performing a single maneuver. On the contrary, when the
amplitudes of the Lissajous orbits are quite different, independent maneuvers have to be applied
for amplitude and phase change.

As a general rule, it is better in terms of cost to use the maneuver which simultaneously
changes amplitude and phase is better than performing two independent maneuvers, when both
strategies are possible. However, when the Lissajous in which the rendez-vous takes place is the
biggest, independent changes may be slightly cheaper for small values of ∆φ. This fact is a natural
consequence of the transfer being essentially a change of amplitudes when the phase change is
small. See tables 3.4 and 3.5 for examples of the cost of rendez-vous maneuvers with amplitude
change.
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∆φ ∆Ax Independent Ax and φ change Simultaneous Ax and φ change
(rad) (%) L1 L2 L1 L2

π
3

-5 37.12 36.47 30.12 29.57
-2.5 37.12 36.48 33.67 33.07
-1 37.13 36.47 35.80 35.17
1 37.87 37.20 38.40 37.72

2.5 38.98 38.30 40.22 39.51
5 40.75 40.12 43.25 42.48

π

-5 72.40 71.13 72.41 71.13
-2.5 73.33 73.32 73.34 72.04
-1 73.89 72.59 73.29 72.59
1 75.38 74.05 74.64 73.32

2.5 77.04 75.69 75.19 73.87
5 79.83 78.43 76.11 74.78

Table 3.4: Cost (in m/s) of the rendez-vous and in-plane amplitude change maneuvers for an initial orbit

of A
(i)

x = 31375.5 km (that is A
(i)

y = 105 km) and different % of amplitude change. The two strategies
(simultaneous or separate maneuvers) are compared for two different values of the phase change, ∆φ. (The

cost of the maneuvers depends on the initial amplitude in a linear way, thus costs for different A
(i)

x can be
easily computed).

∆ψ ∆Az Independent Az and ψ change Simultaneous Az and ψ change
(rad) (%) L1 L2 L1 L2

π
3

-5 40.12 39.51 32.55 32.04
-2.5 40.12 39.51 36.38 35.83
-1 40.12 39.52 38.68 38.10
1 40.92 40.31 41.49 40.87

2.5 42.12 41.50 43.45 42.81
5 44.13 43.47 46.73 47.64

π

-5 78.23 77.06 78.24 77.07
-2.5 79.24 78.05 79.24 78.05
-1 79.84 78.64 79.84 78.65
1 81.45 80.23 80.64 79.44

2.5 83.25 82.01 81.25 80.03
5 86.26 84.98 82.25 81.02

Table 3.5: Cost (in m/s) of the rendez-vous and out-of-plane amplitude change maneuvers for an initial

orbit of A
(i)

z = 105 km and different % of amplitude change. The two strategies (simultaneous or separate
maneuvers) are compared for two different values of the phase change, ∆ψ. (As for the in plane case, the

cost of the maneuvers depends on the initial amplitude in a linear way, thus costs for different A
(i)

z can be
easily computed).



Chapter 4

Homoclinic and heteroclinic connections
between planar Lyapunov orbits

4.1 Introduction

The introduction of invariant manifolds as a means to describe the phase space around the
equilibrium points L1 and L2 of the restricted three body problem results in more efficient and
adaptable techniques for mission analysis. Furthermore, invariant manifolds can be seen as tubes
which dominate the dynamics and mass transport in the Solar System. In this context, a good
knowledge of the natural transport channels that exist between the collinear points of the RTBP
can help understanding and using the interactions between the celestial bodies. As an example
of practical application, these natural channels have already been used in the Genesis mission,
with a ∆v saving of almost 100 m/s (see for instance [53], [3]).

The instability of the collinear libration point regions justifies the existence of hyperbolic
invariant manifolds associated with the libration point orbits. An unstable invariant manifold
can be regarded as a dynamical tube arising from the orbit and going away from it exponentially
fast in forward time. On the contrary, stable manifolds approach the orbit also exponentially
fast in forward time (or leave in backward time). Consequently, when an intersection between
an unstable manifold and a stable one exists, it provides an asymptotic path going away from
a libration orbit and approaching another one. If both manifolds belong to the same orbit, this
asymptotic path is called homoclinic connection. When the intersecting manifolds belong to
different orbits, the trajectories joining them are called heteroclinic connections ([27], [25], [56]).

In this chapter, a methodology aimed at finding and classifying homoclinic and heteroclinic
connections in the Planar Restricted Three Body problem, which provide cheap transfers from one
libration point to another, is developed. Results are presented for the Sun-Earth and Earth-Moon
systems.

75
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4.2 Methodology

We use the planar restricted three body problem to model the Earth-Moon and Sun-Earth sys-
tems. A detailed description of this model, its equations of motion and other comments such as
its Hamiltonian character can be found in chapter 2. However, some ideas on the computation
of the orbits and manifolds that are used in the present chapter are reviewed in the following
sections.

4.2.1 Lyapunov orbits

In the planar restricted three body problem, there exists only one planar periodic motion around
Li (i = 1, 2) for each given energy level: the planar Lyapunov orbit. These are the orbits we
use to find natural transport channels between L1 and L2. The use of planar Lyapunov orbits
is convenient for several reasons. Obviously, the complexity of the problem is reduced when
using the planar approximation, because the order of the system, as well as the dimension of the
manifolds and their intersections is smaller than for the spatial problem. In addition, it is well
known that planar Lyapunov orbits exist also in the 3D restricted three body problem, and they
surround the rest of types of orbits in the Poincaré maps like the ones shown in chapter 2. In
fact, the xy projection of hyperbolic manifolds belonging to other libration orbits (Lissajous or
Halo orbits, for instance) is actually contained in the manifolds of the Lyapunov orbits of the
corresponding energy level. Therefore, using these planar orbits is a natural way of studying the
channels in the libration regions.

Furthermore, planar Lyapunov orbits and their hyperbolic manifolds can be computed using
Lindstedt-Poincaré procedures. In this way, their expansions are obtained in convenient RTBP
coordinates. As usual, we set the origin of coordinates at the libration point (L1 or L2) and scale
the variables in such a way that the distance from the equilibrium point to the small primary is
equal to one. The expansion of the equations of motion in these variables (x, y) takes the form,
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ρ

)

,
(4.1)

where ρ2 = x2 +y2, Pn is the Legendre polynomial of degree n, and cn are constants which depend
only on µ and the selected equilibrium point (see chapter 2, section 2.3). Note that in (4.1) the
linear terms appear in the left hand side part of the equations and the nonlinear ones in the right
hand side. The solution of the linear part of equations (4.1) is:

xl(t) = A1e
λt + A2e

−λt + Ax cos(ωt+ φ),
yl(t) = cA1e

λt − cA2e
−λt + κAx sin(ωt+ φ)

(4.2)

where κ, c, ω and λ are constants for a given model and libration point (see equation (3.3)).
The A’s are free amplitudes. A1 and A2 are the ones associated with the hyperbolic manifolds.

If A1 = A2 = 0, we have the linear part of the Lyapunov orbit with amplitude Ax. When A1 = 0
and A2 6= 0 we have orbits tending to the Lyapunov orbit of amplitude Ax when time tends to
infinity (stable manifold). On the contrary when Ax = 0 and A1 6= 0, orbits leave the vicinity
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of the Lyapunov exponentially fast in forward time (unstable manifold). When we consider also
the non-linear terms of (4.1), solutions are obtained by means of formal series in powers of the
amplitudes of the form:

x(t) =
∑

e(i−j)θ2 [xpijk cos(pθ) + x̄pijk sin(pθ)]Ai
1A

j
2A

k
x

y(t) =
∑

e(i−j)θ2 [ypijk cos(pθ) + ȳpijk sin(pθ)]Ai
1A

j
2A

k
x

(4.3)

where θ = ωt+ φ, θ2 = λt and,

ω =
∑

ωijkA
i
1A

j
2A

k
x, λ =

∑

λijkA
i
1A

j
2A

k
x.

Summation is extended over all i, j, k and p ∈ N. However, due to symmetries, many of the
coefficients xpijk, x̄

p
ijk, y

p
ijk, ȳ

p
ijk, ωijk, λijk are zero. Moreover the series are truncated at a certain

(high) order (see [60] for more details).
It is important to note that the meaning of the amplitudes in the nonlinear expansions (4.3)

is the same one as in the linear solutions (4.2). This fact makes Lindstedt- Poincaré set of
coordinates (amplitudes and phases) suitable for our purposes, as it provides them with a clear
physical meaning.

4.2.2 Fixed energy surfaces

The expression of the Jacobi constant at a given point (x, y, ẋ, ẏ) is,

C(x, y, ẋ, ẏ) = −(ẋ2 + ẏ2) + 2 Ω(x, y) (4.4)

where Ω(x, y) = 1
2
(x2 + y2) + 1−µ

r1
+ µ

r2
and r1, r2 the distances between (x, y) and the primaries,

m1 and m2. It is easily proved that C = −2H, where H is the Hamiltonian function of the
RTBP, as explained in chapter 2. Therefore, the Jacobi constant is an integral of the motion
in the restricted three body problem. That is to say that it remains constant on the orbits
γ(t) = {(x(t), y(t), ẋ(t), ẏ(t)), t ∈ R}, which are a solution of equations (4.1).

On the other hand, the number of degrees of freedom in the planar restricted three body
problem is n = 2. Thus, the order of the system is 2n = 4, which is reducible by the Jacobi
constant to 3. That is to say that as C does not vary along the solutions, we have to study
only 3 of the four coordinates of the phase-space for each orbit, obtaining the fourth one from
equation (4.4).

The level surfaces of the Jacobi constant in the planar problem are called energy surfaces, three
dimensional manifolds implicitly defined by equation (4.4) on which we can look for solutions of
the PRTBP.

M(µ, C∗) = {(x, y, ẋ, ẏ) | C(x, y, ẋ, ẏ) = C∗}
We use a particular range of Jacobi constants, [Cmin, Cmax], which depends on the system we

are modelling and on the libration point we are dealing with. As the value of C increases, the
amplitude of the corresponding Lyapunov orbits becomes smaller, because the zero velocity curves
progressively close around Li. Actually, when the expression in equation (4.4) is evaluated exactly
on a libration point, and a value of the Jacobi constant is obtained which we call CLi

, the zero
velocity curves of the corresponding energy level collapse on Li. Therefore, CLi

corresponds to the
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absolute maximum of usable values of C. On the other hand, the values Cmin that we use are found
when the Lindstedt-Poincaré series no longer provide accurate results when truncated at order
15. That is, when the norm of the difference between evaluating given Lindstedt-Poincaré series
at a particular moment of time and the integration of the same series over the same time span
(typically one period of revolution of the primaries) is bigger than 10−6 in RTBP adapted units.
If we wanted to work with smaller C, we would have to use other semi analytical techniques, such
as normal form expansions ([49]), or numerical continuation methods. However, for Lyapunov
orbits, Lindstedt-Poincaré expansions provide good results even for amplitudes which are already
too big in terms of practical interest. Therefore, the Cmin that yields from the aforementioned
criteria of series accuracy is enough for the purposes of this work. Consequently, only Lindstedt
Poincaré expansions have been used for describing the Lyapunov orbits and their manifolds, as
they are associated with coordinates that have a clear physical meaning.

To sum up, despite the fact that the range of Jacobi constants we work with may seem
small, it allows the Ax amplitudes of the Lyapunov orbits to experiment a significant variation
(from almost zero up to a 370×105km for the Sun-Earth case and 17000 km for the Earth-Moon
one). See figure 4.1, where Lyapunov orbits for the usable C are depicted. As the Jacobi constant
increases, the corresponding amplitudes decrease and the other way round. Moreover, in table 4.1
the values of the maximum and minimum Jacobi constants, as well as maximum and minimum
corresponding Ax amplitudes of the Lyapunov orbits, are shown. Remember that the amplitude
Ay is obtained by multiplying Ax by k̄, which has a value of around 3.2. Therefore, the biggest
possible amplitudes of the Lissajous orbits are associated with huge excursions in the y direction,
which makes them rarely suitable for applications. On the other hand, the smallest amplitudes
shown in the aforementioned table correspond to tiny orbits which would present operational
problems such as expensive station keeping or eclipse avoidance strategies. Consequently, interest
should be mainly focused on the central range of Jacobi constants and amplitudes.
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Figure 4.1: xy representation of Lyapunov orbits for the range of usable C. Sun-Earth (left) and Earth-Moon
(right) cases. The small circle in the center of the figures represents the position of the Earth and Moon
respectively (not to scale).
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Sun-Earth µ = 0.30404234 10−5 Earth-Moon µ = 0.012150582
Cmin Cmax Cmin Cmax

Homoclinic L1 3.0007222915 3.00090098 3.149305 3.20034403
Homoclinic L2 3.00072105 3.0008969275 3.14445 3.184163

Amax Amin Amax Amin
Homoclinic L1 359019.1 1081.9 12661.6 100.6
Homoclinic L2 366122.8 548.3 17258.1 50.3

Table 4.1: Range of usable Jacobi constants and corresponding Ax amplitudes (in km) of the Lyapunov
orbits. The mass parameters in the Sun-Earth and Earth-Moon cases are obtained from JPL ephemeris
DE403.

4.2.3 KS-Regularisation

The distance from the infinitesimal mass to both the primary bodies appears as a denominator
in the RTBP equations. Therefore, when the small particle approaches one of the big primaries,
the denominator tends to zero and a numerical problem of tiny denominators has to be faced.
Approaching the big primary (m1) is not a problem to be taken into account if we work in L1

and L2 regions. However, the distance to the small primary (namely the Earth in the Sun-Earth
system and the Moon, in the Earth-Moon one) can become very small at some points, with
the consequent computational problems due to this singularity. We have used a well known
Regularisation method introduced by Levi-Civita (2-D) and Kustanheimo in order to overcome
this drawback (see [78], [50]).

In a first step, the generalised Levi-Civita regularisation consists of introducing a new inde-
pendent variable, s, to act as a fictitious time, such that d

dt
= 1

r
d
ds

(where r is the distance to the
primary which tends to be close to 0. In our case, the distance to the small primary). Therefore,
as dt

ds
= r, the physical time t becomes a coordinate-like variable and varies slowly in the vicinity

of r = 0.
As for the position and velocity coordinates, the 2D Levi Civita regularisation uses the squaring

technique, namely a vector u ∈ R
2 such that r =

√

x2 + y2 = |u|2 = u2
1 +u2

2 and x = u2
1−u2

2, y =
2u1u2. In 3D, a vector u ∈ R

4 must be introduced and the matrix,

L(u) =









u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2

u4 −u3 u2 −u1









,

leads to the KS transformation: X = L(u)u, X = ((x1, x2, x3, 0) ∈ R
4 Note that the upper left

2 × 2 matrix is indeed the original Levi-Civita matrix. In addition, X refers to the position
coordinates of the infinitesimal particle in a coordinate system centred at the small primary, such
that r =

√

x2
1 + x2

2 + x2
3.
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If yields from X = L(u)u that,

x1 = u2
1 − u2

2 − u2
3 + u2

4,
x2 = 2u1u2 − 2u3u4,
x3 = 2u1u3 + 2u2u4,
x4 = 0

(4.5)

The inverse transformation, from X to u, is

u2
2 + u2

3 =
1

2
(r − x1) (4.6)

u1 =
x2u2 + x3u3

r − x1

u4 =
x3u2 − x2u3

r − x1

,

if x1 < 0 and,

u2
1 + u2

4 =
1

2
(r + x1) (4.7)

u2 =
x2u1 + x3u4

r + x1

u3 =
x3u1 − x2u4

r + x1
,

if x1 > 0.
In our case, if (x, y, z) are the position coordinates of the small particle in the RTBP coordinate

frame centred at L1 and normalised so that the distance from L1 to the small primary is equal to
1, we have that,

x1 = x− 1, x2 = y, x3 = z.

For the L2 case, the only difference is x1 = x + 1.
As for the velocity vectors, we apply the already defined relationship between the derivatives

with respect to t and s (ẋi = dxi

dt
= 1

r
dxi

ds
= 1

r
x′i) on the equations in (4.5) and we obtain,

ẋ =
2

r
(u1u

′
1 − u2u

′
2 − u3u

′
3 + u4u

′
4) (4.8)

ẏ =
2

r
(u1u

′
2 + u2u

′
1 − u3u

′
4 − u4u

′
3)

ż =
2

r
(u1u

′
3 + u2u

′
4 + u3u

′
1 − u4u

′
2)

Respectively, from (4.6), we get,
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u′1 =
1

2
(u1ẋ+ u2ẏ + u3ż) (4.9)

u′2 =
1

2
(−u2ẋ + u1ẏ + u4ż)

u′3 =
1

2
(−u3ẋ− u4ẏ + u1ż)

u′4 =
1

2
(u4ẋ− u3ẏ + u2ż)

Therefore, when we are integrating a manifold, and we find a point (x, y, z) that approaches
the small primary of the system to a distance which is below the permitted one (fixed to around
15000 km for the Earth-Moon system and 50000 km for the Sun-Earth one), we transform the
point to u-coordinates. If x is smaller than the x coordinate of the primary, expressions in (4.6)
are used for the transformation; respectively, if x is greater than the x coordinate of the primary,
we use (4.7). In these expressions, four values of the ui have to be determined from the three
position coordinates (x, y, z). Consequently, we have one degree of freedom which we use for fixing
u1 = 0 in (4.6) (respectively u2 = 0 if we use (4.7)). Note that this is not the only possibility, but
it is a suitable one. Once we have computed ui, for i=1..4, we can use the expressions in (4.9) to
obtain u′i, i=1..4.

The idea now is to continue integrating the manifold, in the new coordinates, until a point is
reached where the infinitesimal particle is far enough from the primary to use the usual coordinate
frame again. However, in order to continue integrating the manifolds in the new coordinate system
we need to know the expression of the vectorial field (i.e the system of differential equations of
motion) in u coordinates. That is, we need the expression of the second derivatives of u with
respect to s. After some computations, using the relation between d/ds and d/dt, we get that

u′′ =
h

2
u+ LT (u)BL(u)u+

(uu)

2
LT (u)F ∗, (4.10)

where,

F ∗(x, y, z) =

(

(

x− 1 +
1

γ

)(µ− 1

r3
+ 1

)

− µ

γ
, y

(

µ− 1

r3
+ 1

)

, z

(

µ− 1

r3

)

, 0

)T

h = Ω(x, y) − µ

r
− 0.5C,

and

B =









0 2 0 0
−2 0 0 0
0 0 0 0
0 0 0 0









.

Note that in the coordinate frame centred at Li, Ω(x, y) = 1
2
((−γx+µ−1+γ)2+y2γ2)+ 1−µ

r1
+

µ
r
+0.5µ(1−µ) (with r1 the distance to the big primary, and r the distance to the small primary).
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Moreover, the expression for F ∗ depends on (x, y, z), which we can compute from (u1, u2, u3, u4)
at each time step.

Finally, only the equation for the time t, which is now a coordinate-like variable, has to be
added to the 4 second order equations obtained from (4.10) to complete the field in the new
coordinates. It is straightforward from the definition of s that

t′ =
dt

ds
= r = u2

1 + u2
2 + u2

3 + u2
4.

By using this regularisation, and applying it to the integration of the RTBP vector field, we
enhance the global adaptation of the model to the problem. This is to say, we are able to consider
the set of solution orbits which travel close to the Earth (for the Sun-Earth case) or close to the
Moon (for the Earth-Moon case). The distances at which this change of coordinates was used
were of around 15000 km from the Moon center (for the Earth-Moon problem, remember that
the radius of the Moon is less than 2000 km), and less than 100000 km from the Earth center
for the Sun-Earth problem (radius of the Moon approximately 6700 km). These orbits, indeed,
might as well be the most important in terms of practical applications for spatial missions; for
instance: injection, phasing loops or reentry.

4.2.4 Homoclinic and heteroclinic phenomena

As stated in section 4.2.1, for a given energy level there is a unique planar Lyapunov orbit
homeomorphic to S1, around each libration point (L1 and L2). As the phase space near these
points has a saddle component, there are orbits asymptotically approaching the Lyapunov in
forward time (stable manifolds) and orbits leaving it as well (unstable manifold). These manifolds
are two dimensional in M(µ, C) (for details see [48]).

Assume that an intersection is found between the stable manifold associated with a Lyapunov
orbit and the unstable manifold of another one. Due to the uniqueness of solutions of a system
of ordinary differential equations, an intersection in the complete state space implies that the
part of the trajectory belonging to the unstable manifold and the one belonging to the stable
manifold are indeed the same solution. That is to say that from each intersection between the
manifolds, a trajectory is obtained which asymptotically approaches a Lyapunov orbit both in
forward and in backward time. Consequently, this trajectory acts as a zero cost natural transfer
between Lyapunov orbits. If the aforementioned manifolds belong to the same orbit, the transfer
is called homoclinic connection. On the contrary, if the manifolds are associated with different
Lyapunov orbits, transfer trajectories are called heteroclinic connections. In this part of our
work, connections are found between orbits laying in the same energy level of the planar RTBP.
Consequently, only one periodic orbit exists around each one of the libration points. Therefore,
the connections we find will only be heteroclinic when they travel from the vicinity of one of the
libration points to the vicinity of the other one (from L1 to L2 or the other way round).

Poincaré section

Homoclinic and heteroclinic connections between planar Lyapunov orbits can be found by means
of a Poincaré section. As it is well known, Poincaré sections are used to study dynamical systems
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by observing their flow when crossing a given surface or plane. These crossings have a lower
dimension than the complete state space. Nevertheless, they still provide useful information
about the behaviour of the system.

For a given M(µ, C), we use the following Poincaré section S,

S = {(x, y, ẋ, ẏ) ∈ M(µ, C) | x = −1 + µ}.
Furthermore, a positive integer, k, is chosen. Then, initial conditions which lay in the invariant

stable (respectively unstable) manifolds of the corresponding Lyapunov orbit are integrated until
the trajectory has crossed the section k times. After these crossings, we have the representation
of the k-cut between the manifold and the section.

As we have already explained, Lyapunov planar orbits are S1 like objects. The manifolds which
arise from them are like tubes in the phase space. So, they result in curves when intersected with
a transversal section, S. We will write W

(u/s),j
i standing for the j-th intersection of the W u/s

(unstable or stable invariant manifold) of the Lyapunov orbit around Li with S. Depending on
the initial phase and the Jacobi constant, some orbits escape to the exterior region (see figure 4.2)
or collide with the small primary (Earth or Moon) after a certain number of cuts. If an escape or

collision occurs, the structure of S1 is broken. That is to say that not all W
(u/s),j
i will be S1-like

objects, especially as j increases. We must mention here that in this work the word collision is
used when an orbit approaches the point-mass Earth or Moon within a distance slightly bigger
than their respective real radii.

Figure 4.2: Regions defined by the zero velocity curves: In green the interior region, around the big primary.
In pink, the region surrounding the small primary, connected to the interior region by L1 and to the exterior
region by L2.

Once we have W
(u/s),j
i on S, it is convenient to look at it as a curve in the (y, ẏ) plane. In S,

x is fixed and ẋ can be computed using equation (4.4). In fact, |ẋ| is determined by the Jacobi
constant, but not its sign. We need to keep in mind which is the direction of the manifolds we
intersect in order to avoid problems when defining the mentioned sign across S. Thus, a point
(y0, ẏ0) is enough to obtain a complete state in R

4, for a given energy level M(µ, C), once we know
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how to choose the sign for the ẋ component. Moreover, as the coordinates we are working with
give the system an autonomous character, each point in the phase space (x, y, ẋ, ẏ) determines
one and only one orbit or solution to equations (4.1).

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007

W

W

s,1
1

u,1
2

-0.06

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0  0.001  0.002  0.003  0.004  0.005  0.006

1

u,1
W

1

s,3
W

Figure 4.3: Representation of some cuts of invariant manifolds on the Poincaré section for the Sun-Earth
problem. (left) C = 3.00084, W u,1

1 ∩W s,1
2 6= ∅, first cut with S of the stable manifold around the L2 Lyapunov

orbit (green) and the first cut with the same section of the unstable manifold of the Lyapunov orbit around
L1 (red). From this intersection, two heteroclinic connections are obtained. (right) C = 3.00088 First cut on
S of the unstable manifold of the Lyapunov orbit around L1 (red) and third cut of the stable manifold of the
same Lyapunov orbit (green), W u,1

1 ∩W s,3
1 6= ∅. From this picture, two homoclinic connections are obtained.

Intersections on the Poincaré section

Different types of intersections between the cuts of the manifolds give rise to different types of
connections:

1. Homoclinic connections around Li, when W u,j1
i ∩W s,j2

i 6= ∅, with i = 1 or 2.

2. Heteroclinic connections from L1 to L2, when W u,j1
1 ∩W s,j2

2 6= ∅.

3. Heteroclinic connections from L2 to L1, when W u,j1
2 ∩W s,j2

1 6= ∅.

(see figure 4.3 to see how these intersections look like on S).
If a point (y0, ẏ0) belongs to one of these intersections, we can complete it by finding x0 using

the expression of S, and ẋ0 using the value of C. Then, this point belongs to a trajectory which
asymptotically approaches a Lyapunov orbit (as it belongs to a stable manifold) and that has
left the vicinity of another Lyapunov orbit (because it also belongs to an unstable manifold).
Due to the unicity of the solutions of a system of ODEs, these two trajectories on the manifolds
have to be the same one. Therefore, (x0, y0, ẋ0, ẏ0) represents a zero cost transfer between the
Lyapunov orbits associated with the manifolds. We obtain the transfer trajectory by integrating
the intersecting point forwards and backwards on the invariant stable and unstable manifolds
respectively.
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On the other hand, a natural way of classifying the connections consists of counting how many
times they go around the small primary, the Earth or the Moon in our case. If j1 stands for the
number of cuts of the unstable manifold with S and j2 the number of cuts of the stable manifold
with the same section, the total number of loops is (j1 + j2 − 1)/2 for homoclinic trajectories and
(j1 + j2 −2)/2 for heteroclinic ones. This provides a parity criterion for the total number of times
the Poincaré section is crossed by every connection:

#cuts with S = κ = j1 + j2 − 1,

which has to be even for homoclinic trajectories and odd for heteroclinic ones.

We use the following notation:

• Honi (n-homoclinic orbits). Homoclinic trajectory of a Lyapunov orbit around Li, i = 1 or
2, with a total number of loops around the small primary m2 equal to n (all of them travel
around m2 in the counterclockwise direction).

• Heni1,i2 . Heteroclinic trajectory from a Lyapunov orbit around Li1 to a Lyapunov orbit
around Li2 winding around the small primary n times. This includes all heteroclinic con-
nections obtained as W j1

i1
∩W j2

i2
with (j1 + j2 − 2)/2 = n.

4.2.5 Details on the numerical methodology

The numerical process for finding homoclinic and heteroclinic connections can be splitted in two
parts:

1. Integration of the manifolds arising from the Lyapunov orbits until they have intersected
the Poincaré section a chosen number of times, resulting in the curves W

u/s,j
i .

2. Computation of the intersections between the cuts of asymptotic manifolds in the Poincaré
section: W

u/s,j1
i1

∩W
u/s,j2
i2

.

Integration of the manifolds

Lyapunov orbits are planar periodic solutions of equations (4.1) with A1 = A2 = 0, as they do
not contain exponential hyperbolic terms. Their planar amplitude, Ax, depends on C (for each
energy surface there is one and only one Ax, as there is a unique Lyapunov periodic orbit). In
order to take initial conditions on the unstable (respectively stable) manifolds we set A1 = ε and
A2 = 0 (respectively A1 = 0, A2 = ε). ε is a small parameter whose sign indicates towards which
branch of the manifold we integrate. Moreover, the phase θ in the aforementioned expansions can
be interpreted as the parametrisation of the Lyapunov orbit (see figure 4.4).

For example, if we want to obtain the second cut of the unstable invariant manifold associated
to the Lyapunov orbit around L1 for a given value of C, Wu,2

1 , we have to set A1 = +ε, A2 = 0
and Ax = Ax(C). In addition, a discreetisation of θ is taken in [0, 2π]. Finally, the set of initial
conditions that we integrate to the second cut with S is,

(ε, 0, Ax, θi), i = 1, n.
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initial conditions

integrated manifold

Lyapunov orbit

t

θ

+ε-ε

Figure 4.4: Schematic representation of a Lyapunov orbit and the hyperbolic manifolds associated to it.
Depending on the sign of ε, the ’left’ or the ’right’ branch of the manifolds is integrated.

The bunch of orbits launched by these kind of initial conditions form manifold tubes like the
ones schematically represented in figure 4.4. As the Poincaré section is {x = µ− 1}, the number
of cuts with the section can be easily controlled by studying the sign of (x(t) + 1− µ). Once this
expression has changed k times from positive to negative or the other way round, the k-cut is
refined using for instance the Newton method on f(t) = x(t) − 1 + µ.

Computation of the intersections between the cuts of asymptotic manifolds in the
Poincaré section.

Given two different manifold cuts in the Poincaré section, Wu,j1
i1

and Ws,j2
i2

, we think of them as
smooth curves. However, we know by the discreetisation taken in the initial conditions that they
are actually polygons with n+1 sides. Therefore, we can easily check for intersections between
segments belonging to one of the manifold cuts and segments which form the sides of the other
manifold cut (see figure 4.5).

When an intersection between the aforementioned segments has been detected, it is refined
in the phase parameter (θ) of the Lyapunov orbits up to the required order of precision. Assume
that a cut occurs between the segments whose extremes are the integrated points defined by the
initial phases (θsi , θ

s
i+1) and (θuj , θ

u
j+1) on the corresponding stable and unstable manifolds. Then,

we can parametrise these segments by:

θs(λ) = θsi (1 − λ) + θsi+1λ
θu(α) = θuj (1 − α) + θuj+1α

}

and find the values α∗ and λ∗ such that θs(λ∗) = θu(α∗). Afterwards, the initial conditions
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θs
i+1

θs
i

Figure 4.5: Schematic representation of the curves representing the cuts of an unstable and a stable manifold
on the Poincaré section, and detail of the intersecting region. Intersections between the curves are found by
comparing the segments forming them.

defined by θs(λ∗) and θu(α∗) are integrated to the corresponding cut with the section, allowing
us to obtain 4 new segments on S:

• A couple of segments on the stable manifold cut joining the points represented by θsi , θ
s(λ∗)

and θsi+1.

• Two more segments on the unstable manifold cut joining the points represented by θuj , θ
u
j+1

and θu(α∗).

Note that two of these segments must contain the intersecting point between the cuts of the
manifolds. So, they are compared in order to determine the new pairs of phases between which
the cut occurs. Once the new intersecting segments have been detected, they are parametrised
and new θs(λ∗) and θu(λ∗) are found. This process is stopped when the cut is found with the
required level of accuracy.

At the end of the refining process, we store the value of the resulting phases as the represen-
tation of the connecting trajectory. The connection can then be explicitly found by integrating
in forward time (respectively backward) the initial condition represented by the unstable (respec-
tively. stable) intersecting phase until the desired number of cuts with the section is reached. In
figures 4.10, 4.12, 4.13 and 4.16, some example trajectories are shown.

4.3 Families of connections: Sun-Earth and Earth-Moon

systems.

Once a connection has been found using the method explained in the previous sections, we know
that there are infinitely many others in its vicinity, due to the continuous dependence of the
solutions with respect to the initial conditions and the asymptotic character of the manifolds.
For instance, let (C, θs, θu) be the energy level and the phases on the Lyapunov orbits which are
connected by a homoclinic or heteroclinic connection. Similar connections can be found either
by slowly varying the initial phases on the Lyapunovs (θs, θu) or the Jacobi constant C. In
addition, a tiny modification in the initial conditions can also lead to an almost identical orbit
in the phase space, which differs from the initial one in the time they spend winding around the
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Figure 4.6: There are no 0-homoclinic orbits. The picture on the left corresponds to the smallest C for L1,
and shows how the (x, ẋ) projection of the stable (top) and unstable (bottom) manifolds of the Lyapunov
orbit do not meet before crossing the x = µ−1 plane. On the right picture the (x, y) projection of the stable
(bottom) and unstable (top) manifolds for C=3.0009 (the biggest one used for L1) is shown. Again, they do
not intersect before crossing the Poincaré section at least once.

original Lyapunov or the final one. Obviously, the time span that an asymptotic orbit spends
between leaving the original orbit and reaching the arrival one is infinite. However, for practical
applications, finite times are used as we consider that trajectories reach or leave the Lyapunov
orbits when in fact they are at a distance ε from them. This value ε is the one that is given to
the corresponding hyperbolic amplitude, A1 or A2 (see figure 4.4).

Moreover, the classification that has been performed in this work aims at astrodynamical
applications. Therefore, it mainly deals with simple paths, in the sense that they only wind around
Lyapunov orbits in the departure and arrival parts but not during the mid-course. Furthermore,
connections with a small number of loops around the small primary are usually preferred. For
instance, when the intention is to move from one libration point to the other in a fast way.
Nevertheless, homoclinic connections with up to 8 loops and heteroclinic connections with up to
5 loops around the small primary have been included in this study.

Finally, it is also important to note that there do not exist 0-homoclinic connections. That is,
homoclinic connections go around the small primary at least once. This is a consequence of the
fact that the manifolds never cross the x-axis before crossing the x = µ− 1 plane (see figure 4.6).
On the contrary, the simplest heteroclinic connections are found by intersecting the first cut of
the manifolds from both sides, consequently having a number of loops around the small primary
n = 0.

4.3.1 Homoclinic connecting trajectories

For all we learnt in the previous sections, we know how to find connections given two Lyapunov
orbits and a number of cuts with the section. We also know that once a connection is found,
there must be some others in its vicinity. So, we start by C imin and find the points on S which
represent a homoclinic connection on this energy surface, for a given number of loops n. Then, we
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take a value of C close to the first one and find the connecting trajectories corresponding to this
new energy level. If we have not varied C too much, the new connecting trajectories are bound to
be similar to the former ones, due to the continuous dependency of the solutions of the PRTBP
with respect to initial conditions. That is, they cross the section at similar points. We can do
the same for slowly increasing values of C, storing the points at which the connections cross the
section, until a value of the Jacobi constant is reached for which the manifolds do not intersect.
When this happens, we say we have obtained the whole family of connections corresponding to a
fixed number of loops, n. Afterwards, we can repeat the same procedure for a greater n.

If we represent any coordinate of the crossing points we stored versus the Jacobi constant, we
can draw curves which summarise the information concerning the so called families of connecting
trajectories. Each family of connections consists of several branches, depending on the number
of intersecting points between the cuts of the manifolds. The generic number of intersections
between two manifold cuts on a given section is 0, 2 or 4. However, for particular values of C,
tangencies occur between the cuts of the manifolds, giving rise to 3 connecting trajectories (when
the tangency changes the number of cuts from 4 to 2) or to a single trajectory, when the tangency
occurs at the maximum value of C for which the manifolds with the number of loops equal to the
n that we are considering intersect (see figure 4.7).

C1
C3C2 C5C4

C4 C5

C2C1

C3

Figure 4.7: Schematic representation of how the curves representing the families of connections are obtained.
In the first picture on the top left corner, a family of connections consisting of 4 branches is shown. (x axis:
values of the Jacobi constant, y-axis: y coordinate of the intersecting points on S). The vertical lines in this
figure correspond to chosen values of the Jacobi constant, intersecting the family in 4, 3, 2, 1 or 0 points.
Then, a qualitative representation of the cuts of the manifolds on S corresponding to these energy values is
depicted in the figures labelled by Ci.
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Results for homoclinic connections are shown in figure 4.8, where the y-coordinate of the
connecting trajectories in the Poincaré section is represented for every Jacobi constant. In these
representations, the number of cuts of the manifolds Ws, Wu with S, js and ju respectively, is
chosen so that |js − ju| = 1 and y > 0.

Furthermore, in the aforementioned figure 4.8 each family of orbits, which corresponds to
orbits with the same number of loops around the small primary, is depicted using a different line
style. Each one of the families has different branches that come close to each other as C increases
and finally meet at a bifurcation value, Cbif . If we pick a C such that δ = Cbif − C is big, the
corresponding orbits in each branch are quite different. However, as this distance δ decreases,
the families approach, tending to a common limiting orbit associated with Cbif . The evolution
of the two branches of homoclinic connecting trajectories around L1 in the Sun-Earth problem,
Ho1

1, which meet at a bifurcation value of the Jacobi constant equal to 3.00088389, is shown in
figure 4.10.

Symmetries in the homoclinic families

In the restricted planar three body problem, if a curve (x(t), y(t), ẋ(t), ẏ(t)) is a solution of the
equations then (x(t),−y(t),−ẋ(t), ẏ(t)) is also a solution.

Some asymptotic connections are a closed set with respect to this symmetry property, while
some others are not. This fact motivates the following definitions:

Definition 1. γ is a symmetric (homoclinic) orbit if it satisfies,

(x, y, ẋ, ẏ) ∈ γ ⇔ (x,−y,−ẋ, ẏ) ∈ γ.

Definition 2. γ1, γ2 are complementary orbits (or families of orbits) if they satisfy,

(x, y, ẋ, ẏ) ∈ γ1 ⇔ (x,−y,−ẋ, ẏ) ∈ γ2.

We note that Lyapunov periodic orbits are symmetric. Also, all 1-homoclinic orbits are sym-
metric in the sense of definition 1 above. For n-homoclinic orbits, n > 1, we can see in figure 4.8
that there are 4 branches in each family: two of them are symmetric (definition 1), while the
other two are complementary to each other (definition 2). See figure 4.11 for the classification of
these branches according to their symmetry properties. Around L2 the classification of homoclinic
orbits in symmetric and complementary ones is qualitatively the same.

In figure 4.12 a representation of a symmetric 1-homoclinic trajectory and a pair of comple-
mentary 3-homoclinic ones for the Sun-Earth case are shown. Respectively, the pictures in figure
4.13 show a symmetric 2-homoclinic orbit around L1 and a pair of 3-homoclinic complementary
ones around L2 for the Earth-Moon case.

On the other hand, the planar three body problem with 0 < µ < 1
2

is not symmetric in L1-L2.
However, as µ → 0 we have an increasing ”almost-symmetry” with respect to the x = µ − 1
axis. The limiting case, Hill’s problem, has exact geometrical symmetry with respect to this
vertical axis crossing the primary. When γ1 is homoclinic around L1, then its almost-vertical-
symmetric partner, γ2, has to be an homoclinic trajectory around L2. To find which families are
almost-symmetric to each other with respect to the surface of section x = µ − 1 we just have
to compare the two pictures in figure 4.8. If we choose a number of loops around the Earth, n,
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Figure 4.8: Homoclinic connections of the Lyapunov orbits. Around L1 in the first row and around L2 in the
second one. Sun-Earth system corresponds to the left column and Earth-Moon system to the right one. The
x-axis of this figures shows the range of Jacobi constants, while in the y-axis the y coordinate of the central
cut of the trajectory with C is represented.
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Figure 4.9: Families of homoclinic connections. The x axis of each picture contains the values of the Jacobi
constant, while the y axis contains the starting (or arriving) phases on the manifolds. First and second rows
correspond to homoclinic connections for the Sun-Earth case, the first one homoclinic families around L1, the
second one around L2. Third and fourth rows correspond to homoclinic connections for the Earth-Moon case
(third for L1, fourth for L2). In the column on the left phases on the unstable manifolds are shown (starting
phases), while in the column on the right, the corresponding arriving phases (stable manifold).Note that any
figure from the left is symmetric to the corresponding one on the right with respect to the horizontal axis
θ = π.
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Figure 4.10: Sample trajectories belonging to a family of homoclinic orbits around L1 for the Sun-Earth case.
Each row corresponds to a branch of the Ho1

1 family. We can see how from left to right the two branches
become more similar, as C tends to the bifurcation value. Left, C = 3.00085, middle C = 3.000866 and right
C = 3.0008804. In the picture on the right, the bifurcation trajectory is also represented, in red.
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Figure 4.11: Symmetric (continuous red line) and complementary (dotted blue line) families of homoclinic
trajectories. (left) Sun-Earth problem. (right) Earth-Moon problem.

and pick one of the four branches which represent n-homoclinic trajectories around Li1 (two if
n = 1) the corresponding branch of trajectories around Li2 contains n-homoclinic orbits which
are vertically almost-symmetric to the first ones. For example, see trajectories in figure 4.12. If µ
is not very small vertical symmetry is lost. That is the case of the Earth-Moon mass parameter
(see figure 4.13).

4.3.2 Heteroclinic connecting trajectories

If we look for intersections between hyperbolic manifolds of different periodic orbits around Li,
what we obtain is a set of heteroclinic connections instead of homoclinic orbits. Nevertheless, the
procedure used for finding heteroclinic trajectories is exactly the same as the one we explained
for homoclinic ones.

Obviously, the range of values of the Jacobi constant for which we can search for heteroclinic
connections between Lyapunov orbits has to be the intersection between the intervals in which
we have restricted our expansions for both libration points. That is [C1

min, C2
max]. If we proceed

exactly as we did for homoclinic orbits, storing the connections for each value of C, what we
get is represented in figure 4.14. In more detail, the points of any vertical line (corresponding
to a particular value of C) which intersect one of the curves of the figure, represent heteroclinic
connections between L1 and L2 going through the Poincaré section with the y value represented
in the y-axis of picture (i.e. y-axis corresponds to the y coordinate of the connections when
x = −1 + µ). The figure is symmetric with respect to y = 0, but connections with y > 0 go from
L1 to L2, while connections with y < 0 go from L2 to L1 and are symmetric to the previous ones
due to RTBP symmetry which will be further explained for heteroclinic trajectories.

The bifurcation phenomena is similar, with pairs of families of connections tending to a single
one at a bifurcation value of the Jacobi constant. In figure 4.16 we can observe the evolution
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Figure 4.12: Example trajectories for the Sun-Earth case. First row: (left) Symmetric 2-homoclinic trajectory
around L1 corresponding to C = 3.00075. (middle) Pair of complementary 3-homoclinic L1 trajectories, Ho3

1,
C = 3.0008428. (right) Almost symmetric 2-homoclinic orbits with respect to the vertical axis, corresponding
to C = 3.00085226. Second row: (left) Symmetric heteroclinic channel (with respect to the horizontal and
vertical axis), C = 3.00086. (middle) Symmetric heteroclinic channel (with respect to the horizontal axis)
C = 3.00084. (right) Almost-symmetric heteroclinic trajectories (with respect to the vertical axis) from L1 to
L2, C = 3.00084.
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Figure 4.13: Examples for the Earth-Moon case. First row: (left) Symmetric trajectory with respect to
the x axis corresponding to a 2-homoclinic orbit around L1 with C = 3.17. (middle) Pair of complementary
(i.e. symmetric one to another with respect to x axis) L2 3-homoclinic orbits, C = 3.181. (right) Vertical
quasi-symmetry is lost in the Earth Moon problem. Homoclinic orbits around L1 are not quasi symmetric
to homoclinic orbits around L2 for values of the C that result in orbits of rather different amplitudes around
both libration points. Second row: (left) Symmetric heteroclinic channel with respect to the horizontal axis
corresponding to C = 3.17053333. (middle) Another example of how the vertical quasi-symmetry is lost for
values of C for which Lyapunov orbits from both sides have different amplitudes (in this case, C = 3.1699667).
(right) Heteroclinic channel which is symmetric with respect to the x axis and quasi-symmetric with respect
to the y axis. The loss of vertical symmetry is not that obvious if C is small enough (in this case C = 3.161).
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Figure 4.14: Families of heteroclinic connections. (top) Sun-Earth mass parameter. (bottom) Earth-Moon
mass parameter. In this figures the x-axis contains the values of the Jacobi constant, while in the y axis the y
coordinate of the central cut of the trajectory with S is shown. Note that connections with y > 0 correspond
to heteroclinic orbits from L1 to L2, while their symmetric connections, from L2 to L1 are represented with
y < 0.
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Figure 4.15: Families of heteroclinic connections. The x axis of the figures contains the values of the
Jacobi constants for which the connections are found, and the y axis represents phases: Red curves represent
the values of the departing phases on the unstable manifolds of the aforementioned connections, while green
curves represent the values of the arriving phases on the stable manifolds. As the values of the Jacobi constant
indicates, the pictures on the top correspond to heteroclinic connections in the Sun-Earth problem, while the
pictures on the bottom, to heteroclinic connections in the Earth-Moon problem. Finally, figures on the left
correspond to L1 to L2 connections, while figures on the right correspond to L2 to L1 connections. Note
that the figures in each row are symmetric to each other with respect to θ = π and interchanging the roles
of stable and unstable phases.
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of a family of heteroclinic connections from L1 to L2 for the Sun-Earth problem, which has two
branches that end at the bifurcation trajectory with C = 3.000863625.
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Figure 4.16: Heteroclinic connections belonging to different branches of the same family (from L1 to L2,
1 loop around the Earth). From left to right, the connections correspond to the values of C= 3.000799,
3.0008361 and 3.0008615. The two branches approach as C tends to 3.00086362, tending to the bifurcation
trajectory represented in purple in the right column.

We say that a pair of heteroclinic orbits, one from L1 to L2 and the other from L2 to L1 is an
heteroclinic channel. Figures 4.12 and 4.13 contain some representations of heteroclinic channels.

Symmetries in the heteroclinic families

The intrinsic symmetry property of the PRTBP is responsible for the existence of the so-called
symmetric heteroclinic channels. If (x(t), y(t), ẋ(t), ẏ(t), t) is a heteroclinic connection from L1 to
L2, then (x̃(t), ỹ(t), ˙̃x(t), ˙̃y(t)) = (x(−t),−y(−t),−ẋ(−t), ẏ(−t)), is a connection from L2 to L1

(see figure 4.14). That is,

∀γ1 ∈ Heni1,i2 ∃ γ2 ∈ Heni2,i1 such that (x, y, ẋ, ẏ, t) ∈ γ1 ⇔ (x,−y,−ẋ, ẏ,−t) ∈ γ2.

The vertical almost symmetry that exists for small values of µ does not give rise to return
heteroclinic channels. That is to say that if γ1 is a heteroclinic connection from Li1 to Li2, and
γ2 is its vertical-almost-symmetric partner, then γ2 also goes from Li1 to Li2. In figure 4.12
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some examples of symmetric heteroclinic channels, as well as vertical almost-symmetric pairs of
connections are shown.

For the Earth-Moon case, the almost symmetry is lost as we have seen for homoclinic con-
nections, especially for those values of the Jacobi constant which produce Lyapunov orbits of
considerably different size in each equilibrium point. However, if Lyapunov orbits are similar
(small values of the Jacobi constant), we can still find some almost vertical heteroclinic connec-
tions, as shown in figure 4.13.



Chapter 5

Transfer trajectories between the
Sun-Earth and Earth-Moon L2 regions

5.1 Introduction

The Sun-Earth L2 libration point is becoming a very important location for deep space exploration
(telemetry and observation missions such as Herschel, Planck, Darwin, TPF. . . ). In addition, it
is nowadays arising as a strategic point in the long-term human space exploration architecture
([13]). In this context, it is of the utmost importance not only to minimise the fuel expenditure,
but also to reduce the risks to a level which is acceptable for manned missions. Therefore, it
is very useful to study the natural dynamics of the bodies involved in the missions, starting by
using simple models. The invariant manifolds of the Restricted Three Body Problem (RTBP)
are a perfect example of how the natural dynamics can help in mission design. In fact, they have
been used in the previous chapters to solve different problems such as the cheap transfer between
libration point orbits or eclipse avoidance.

On the other hand, the Earth-Moon libration regions are also interesting locations for current
and near-future space exploration. Not only are they close enough to the Earth to hold servicing
facilities, but they are also convenient steps in the trip to the outer planets, such as Mars. One
can think that it would be cheap to transfer to Earth-Moon libration points from the vicinity of
the Earth by using the invariant manifolds of the libration orbits. Simple explorations show that
this is not true, as the aforementioned manifolds never come to a close approach with the Earth.
However, Sun-Earth libration orbits have bigger manifolds, which really approach the Earth in
some cases. Therefore, the idea of coupling the Sun-Earth and Earth-Moon restricted three body
problem manifolds in order to obtain low cost transfers to the lunar libration regions arose in a
natural way ([52]).

In the present chapter, the idea of intersecting invariant hyperbolic manifolds will be exploited
in a slightly different way than in chapter 4. Our goal is to join libration orbits belonging
to Sun-Earth and Earth-Moon problems. That is, decoupling the problem in two restricted
three body problems, computing the invariant manifolds of the chosen orbits and looking for
intersections between them in convenient intermediate sections. In this way, initial working
trajectories fulfilling the requirements of the missions can be obtained and, in a further step,
they can be refined to more realistic models, resulting in real low cost motions which are close to

101
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natural channels.
To sum up, this chapter is aimed at finding low cost connections between the solar libration

regions and the lunar libration ones and it is divided in three parts. In the first part, asymptotic
connecting trajectories are found between Lyapunov orbits of the planar Sun-Earth and Earth-
Moon RTBPs. Secondly, this search for asymptotic transfers joining both RTBPs is performed in
the three dimensional models and using Lissajous orbits. Finally, the last part of the chapter is
devoted to refining the connecting trajectories that have been obtained between Lissajous orbits
to realistic JPL ephemeris coordinates.

5.2 Connecting trajectories between planar Lyapunov or-

bits

As it is well known, models for the motion of n bodies are complex and the determination of
particular solutions for them involves long computations. If we want to study the motion of a
spacecraft under the influence of the Sun, the Earth and also the Moon, we need a four body
model. However, in a first approach one can think of decoupling it in two restricted three body
problems (RTBP). In this way, we can take advantage of our knowledge and experience with three
body problems in order to find approximate solutions.

The Sun-Earth-Moon-spacecraft four body problem will be decoupled in:

• The Sun-Earth+Moon-spacecraft RTBP, which has the Sun and the Earth-Moon barycenter
as primaries. We will refer to it as SE problem.

• The Earth-Moon-spacecraft RTBP, which has the Earth and the Moon as primaries. It will
be referred as EM problem.

In the first studies, we will neglect the inclination of the plane of motion of the Moon with
respect to the ecliptic plane (i.e. the plane of motion of the Earth around the Sun), which
is approximately 5 degrees. Therefore, in our simplified model, the Sun, the Earth and the
Moon are considered to be revolving in a single plane. In addition, we only consider positions
of the spacecraft belonging to this plane of motion of the three bodies: Sun, Earth and Moon.
Consequently, the restricted three body problems that we use in this part of the work are planar.

The small primary of the SE system is considered to have a mass which is the addition of
Earth and Moon masses, and to be placed where the Earth-Moon barycenter lays. On the other
hand, the origin of coordinates of the EM system coincides with the aforementioned barycenter.
Consequently, the natural way of coupling these two problems is by deploying the EM system
inside the SE one, as shown in figure 5.1. In this figure, the relative position between the Sun-
Earth x axis and the Earth-Moon one is represented by angle β. The position of the Earth-Moon
system with respect to the Sun-Earth+Moon one is time dependent.

5.2.1 Lyapunov orbits and their hyperbolic invariant manifolds

In the PRTBP, there exists only one planar periodic motion around L2 (respectively L1) for each
value of the Jacobi constant: the so-called planar Lyapunov orbit. We aim at finding connections
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Figure 5.1: Coupling between the RTBPs.

between such orbits around L2 of the EM problem and L2 of the SE one. Before starting to describe
how we look for these connections, some ideas on the computation of the planar Lyapunov orbits
and their stable and unstable hyperbolic manifolds are given in this section.

Remember that the linear part of the solutions of the equations of motion of a RTBP is,

x(t) = A1e
λt + A2e

−λt + Ax cos(ωt+ φ),
y(t) = cA1e

λt − cA2e
−λt + κ̄Ax sin(ωt+ φ)

(5.1)

where c, κ̄, ω and λ are constants for a given model and libration point.
The A’s are free amplitudes. A1 and A2 are the ones associated with the hyperbolic manifolds.

If A1 = A2 = 0, expressions in (5.1) describe the linear part of the Lyapunov orbit, which is
essentially a periodic oscillation in the xy plane with x amplitude equal to Ax and y-amplitude a
quantity which is also depending on Ax. When A1 = 0 and A2 6= 0 we have orbits tending to the
Lyapunov orbit of amplitude Ax when time tends to infinity (stable manifold). On the contrary
when A2 = 0 and A1 6= 0, orbits leave the vicinity of the Lyapunov exponentially fast in forward
time (unstable manifold).

When we consider also the non-linear terms, solutions are obtained by means of formal series
in powers of the amplitudes of the form:

x(t) =
∑

e(i−j)θ2 [xpijk cos(pθ1) + x̄pijk sin(pθ1)]α̃

y(t) =
∑

e(i−j)θ2 [ypijk cos(pθ1) + ȳpijk sin(pθ1)]α̃
(5.2)

where α̃ = Ai
1A

j
2A

k
x, θ1 = ωt+ φ, θ2 = λt and,

ω =
∑

ωijkA
i
1A

j
2A

k
x, λ =

∑

λijkA
i
1A

j
2A

k
x.

Summation is extended over all i, j, k and p ∈ N. However, due to symmetries, many of the
coefficients xpijk, x̄

p
ijk, y

p
ijk, ȳ

p
ijk, ωijk, λijk are zero. Moreover the series are truncated at a certain

order, which is usually high. Nevertheless, we note that the meaning of the amplitudes in the



Chapter 5 Transfer trajectories between the Sun-Earth and Earth-Moon L2 regions 104

nonlinear expansions (5.2) is the same one as in the linear solutions (5.1). In particular, the
analytical expression for the Lyapunov orbit is obtained by setting A1 = A2 = 0.

5.2.2 Poincaré section

The use of Poincaré sections is aimed at gaining a better understanding of the behaviour of the
solutions of a dynamical system. On such sections, the flow is observed in a lower dimensional
space, but relevant information can still be derived.

The state space for the Planar Restricted three body problem is 4 dimensional, containing
points of the form (x, y, ẋ, ẏ) ∈ R

4. However, we work with solutions in fixed energy levels by
fixing a value of the Jacobi constant C. The set of points of the state space that belong to a
given energy level is then 3 dimensional. That is, we only need to know 3 of the coordinates
(x, y, ẋ, ẏ), and the fourth one yields from the value of the Jacobi constant. We will use (x, y, ẏ)
when referring to a point belonging to, M(µ, C), a given energy level,

M(µ, C∗) = {(x, y, ẋ, ẏ) ∈ R
4| C(x, y, ẋ, ẏ) = C∗}.

Then, a Poincaré section of the form

S = {(x, y, ẋ, ẏ) ∈ M(µ, C∗)|g(x, y, ẏ) = 0},

and transversal to the tubes can be selected. If g is linear, S is a plane in E .
In this work, S = {(x, y, ẋ, ẏ) ∈ R

4 | x = −1 + µSE} is chosen (µSE stands for the mass
parameter of the SE problem).

5.2.3 Intersections on the Poincaré section

Once a Jacobi constant for the SE problem is chosen, CSE, and another one for the EM problem,
CEM , the amplitudes of the corresponding planar Lyapunov orbits around L2 in each of the
problems are determined. These amplitudes are represented by Ax in equations (5.1). Besides, A1

and A2 are the hyperbolic amplitudes in the same equations. In order to obtain initial conditions
on the unstable manifold of the Lyapunov orbit, we take A2 = 0 and A1 = ε. ε <<1 is a small
parameter representing the distance from the initial conditions on the manifold to the Lyapunov
orbit. On the contrary, when we want to obtain initial conditions on the stable manifold, we take
A1 = 0 and A2 = ε.

We integrate the unstable manifold of the planar Lyapunovs of the EM problem and the stable
manifolds of the planar Lyapunovs of the SE one. These manifolds are two dimensional tubes
which can be parametrised, for instance by the integration time and the initial phase on the
corresponding Lyapunov orbit, θ, as schematically represented in figure 5.2.

Therefore, the initial conditions (in Lindstedt-Poincaré coordinates) that we use in order to
have a representation of the hyperbolic manifolds when looking for paths from the lunar L2

Lyapunov orbits to the solar ones are:

• (0, ε, ASE
x , θSEi ), with i = 1, n and θSEi ∈ [0, 2π) (for the stable manifold of the Sun-

Earth+Moon Lyapunov).
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Figure 5.2: Schematic representation of a Lyapunov orbit and one of the hyperbolic manifolds associated to
it.

• (ε, 0, AEM
x , θEMi ), with i = 1, m and θEMi ∈ [0, 2π) (for the unstable manifold of the Earth-

Moon Lyapunov).

These Lindstedt-Poincaré sets of initial conditions are transformed to position and velocity.
Then, the corresponding state space points (x, y, ẋ, ẏ) are integrated forwards in time (for the
unstable case) or backwards in time (for the stable case) until they intersect the section S. What
we get as a result of the intersection between a 2-dimensional tube and the plane S is generically
a one dimensional object (curve) like the ones depicted in figure 5.5.

Assume that there exists a point belonging to two different curves on the section: one repre-
senting the intersection between S and the unstable manifold of a Lyapunov orbit and the other
one between S and the stable manifold of another Lyapunov orbit. For all we know, this point
belongs to a solution of the PRTBP which has asymptotically left a libration orbit at time −∞
and which at the same time tends to another libration orbit as time tends to +∞. Therefore,
by integrating the aforementioned point forwards and backwards, we get a zero cost connecting
trajectory joining both orbits.

A complete development of this idea and its application to finding zero cost connections be-
tween libration orbits around the points L1 and L2 of the Earth-Moon and Sun-Earth systems
(separately) can be found in chapter 4. A new application of this methodology is done in the
present section, aimed at finding low cost connecting trajectories between Lyapunov orbits be-
longing to different Restricted Three Body Problems. The main idea is to choose a Poincaré
section common for both problems and integrate the EM and SE manifolds separately until they
intersect this section. However, when dealing with different RTBPs and before looking for inter-
sections between curves on S, one has to make sure that they are in the same coordinate system
and that the Poincaré section is in fact the same in both cases.

Let us describe the coupling in more detail, as represented in 5.4 including the Poincaré
section. In each of the restricted three body problems section S is defined as a plane in the state
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Figure 5.3: Representation of the hyperbolic manifolds of a Lyapunov orbit around L2 in the SE problem
until they intersect S, and the unstable manifold of a Lyapunov orbit around L2 in the EM problem, also until
its first cut with S.

space, perpendicular to the xy plane (of the adapted coordinate system) and forming a constant
angle with the x-axis (i.e. line joining the primaries). To completely determine S, however, it is
still necessary to specify one point belonging to it. For the SE problem we make the section go
through the point acting as small primary, which is the Earth-Moon barycenter. On the other
hand, for the Earth-Moon case, we make the section contain the origin of coordinates of this
adapted reference frame, which is no other than the Earth-Moon barycenter.

From now on, we will use the SE coordinate system as the global reference frame. The
Poincaré section for the SE problem forms a constant angle with the SE x-axis, φSE. On the
other hand, in the adapted coordinate system of the EM problem, the angle between the section
and the EM x-axis is also fixed, φEM . The angle β (see figure 5.4) represents the position of the
Earth-Moon x axis with respect to the axis joining the Sun and the Earth-Moon barycenter at
a given moment of time. Actually, when looked in the SE coordinates, the Earth-Moon x-axis
is revolving around the Earth-Moon barycenter at an angular speed we assume to be constant,
β̇ = ω. In order to determine this angular velocity, we have to take into account that β performs
a complete revolution with respect to the Sun-Earth+Moon axis in a Moon synodic period (i.e. in
the time that it takes for the Moon to go from full Moon to full Moon). Therefore, β̇ = 2π/29.5309
(rad/day). Consequently, φEM depends uniformly on the time in the SE frame in spite of being
constant in the EM system.

Assume that at a given moment of time the relative position between the EM and the SE
x-axis is such that both Poincaré sections are the same when looked in the SE reference frame.
This is the adequate time for the coupling and the moment when the following relation is satisfied,

φSE = β + φEM . (5.3)
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Figure 5.4: Coupling between the RTBPs and Poincaré sections as seen in the coupled models. In the
picture on the top we see the coupled models at a moment of time t when the section S ′ in the EM problem
does not coincide with S in the SE coordinates. On the contrary, picture on the bottom shows the moment
when both sections overlap, which we choose as initial time t = 0.
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µSE 3.040423398444176e-06

µEM 0.01215058191870689

AU 149597870.691 km

Mean distance Earth-Moon 384400 km

Earth period 365.25 days

Moon period 29.53 days

τ time unit in E-M problem 2π/29.53

ω 11.366834171d0 rad/τ

Table 5.1: Values of some used constants (from [69]).

For the sake of simplicity, we choose the time for the coupling to be t = 0. As the PRTBP is
autonomous, this choice does not represent a loss of generality. It is just a matter of waiting for
the correct SE and EM relative configuration. However, once this origin of time has been chosen,
changes of coordinates can be needed at different moments (t 6= 0). Then, ω will have to be used.
When t 6= 0 we have that,

φSE = β + φEM + ωt. (5.4)

This is the key for coupling the restricted three body problems and serve our purpose of finding
low energy transfers between them.

Let us summarise what we have said so far concerning the coupling of the problems:

• A couple of angles φSE and φEM are chosen. These are the angles between the x axis and
the Poincaré section S in each of the problems.

• The integration of the manifolds from the vicinity of the Lyapunov orbits until they intersect
S is performed independently in each RTBP (see figure 5.3).

• The time of the crossing of the Poincaré section is set to t = 0. This is also the time
when the Poincaré section of the EM system, which is not a fixed plane when looked in SE
coordinates, coincides with the Poincaré section of the SE system.

In order to find intersections between the curves we obtain on S, both curves have to be in
the same coordinate system. We have chosen the SE coordinates as the general frame in this
work, therefore the cut of the manifold corresponding to the EM problem with the Poincaré
section has to be transformed from EM coordinates to SE coordinates. There are two steps to
be accomplished to this purpose: The conversion of the longitude and time units, and rotation
from one system to the other one. The conversion of longitude and time units is easily derived
from the mean values of the Earth-Moon distance and the astronomical unit (AU) in km, and
the revolution periods of the Earth around the Sun and the Moon around the Earth. When it
comes to the rotation angle, it yields from equation (5.3). We do the change of coordinates on
the section, that is when t = 0, and thus the angle between both x-axis is,

β = φSE − φEM .
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Note that this angle only depends on the constant angles we have fixed between the x-axis
and the section S in each PRTBP.

5.2.4 Connecting trajectories

Given a couple of curves on the Poincaré section one being the intersection of a SE manifold
with S and the other one the intersection of an EM manifold (with the corresponding change of
coordinates), we look for intersections between them. See for instance figure 5.5, where the green
curve represents the cut of the stable manifold of a Lyapunov orbit around L2 in the SE system,
and the red one the cut of a unstable manifold of a Lyapunov orbit around L2 in the EM system.

If intersections are found in yẏ coordinates, the x coordinate can be obtained from them using
the implicit definition of the Poincaré section, g(x, y, ẏ) = 0. In our case, it is straightforward to
compute the x coordinate, as it is fixed to −1 + µSE.

 0
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 0.06

 0.08

 0.1

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007

Figure 5.5: yẏ Representation of the first cut with the section of the stable manifold of the C=3.0008
Lyapunov around L2 in the SE system and the first cut with the section of the C=3.16 Lyapunov around L2

in the EM system. We see that the two curves intersect at two different points.

Therefore, we have intersecting points which coincide, so far, in 3 coordinates. The other
coordinate, ẋ, is still unknown from the information that we have on the section and will be
computed using the Jacobi constant. However, each one of the RTBP has its corresponding
Jacobi constant. Consequently, what we usually get is a different ẋ for each problem. So, a
maneuver in the x direction of the velocity is necessary for the connecting trajectory to become
a real transfer. This maneuver is computed in the following way:

• ẋ is computed in the SE problem from (x, y, ẏ) and CSE.

• The same for ẋ in the EM problem. Remember that the points we introduce in the expression
of CEM have to be in EM coordinates. However, once we have obtained ˙̄xEM we can
transform the complete point to SE coordinates again, obtaining ẋEM .
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• Finally, the maneuver can be computed as,

∆v = ∆ẋ = ẋSE − ẋEM . (5.5)

In short, the intersection in the yẏ plane does not suffice to find a complete intersection in
the phase space, as 2 Jacobi constants are involved and can lead to different ẋ. See for instance
Figure 5.6, that shows the representation of a transfer trajectory obtained using this procedure.
The first picture in the figure (top) represents the xyẋ projection, in which a jump is observed at
the section crossing. On the other hand, the picture on the bottom represents the xyẏ projection
which is continuous as these three coordinates coincide on the section.

For all we have said, there are four constants which play a role when trying to find a connecting
trajectory like the ones we are describing. They are:

• The Jacobi constant of the SE problem, CSE.

• The Jacobi constant of the EM problem, CEM .

• The angle of the Poincaré section with the SE x-axis (φSE).

• The angle of the Poincaré section with the EM x-axis (φEM).

The natural thing to wonder now is which combination of values for these constants leads to
connecting trajectories and, in a further step, which one minimises the ∆v in equation (5.5).

5.2.5 Preliminary explorations

It is extremely difficult to organise all the resulting connections in a coherent way, if we have to
take into account all possible values of the four aforementioned constants. In order to simplify
the exposition of the results, some considerations have to be made:

• Results are presented for a fixed value of φSE equal to 90 degrees. Note that this angle could
have been chosen to be any other angular value, as our method presents no restrictions for
it.

• As stated in the previous subsection, all the trajectories that we are showing were obtained
by propagating the unstable manifold of the Lyapunovs in the EM RTBP, and the stable
manifold of the ones in the SE problem. Consequently, they represent paths from the lunar
libration region to the solar one. Trajectories for the way back can be obtained analogously.

• Connections with a low number of cuts are usually preferred, as they provide more direct
transfers. Therefore, we explore the first cuts of both manifolds with the Poincaré section.

• Finally, explorations have been made for values of the angle φEM in [0, π). For values φEM >
π, no intersection between the manifolds has been found on the section (see figure 5.7).
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Figure 5.6: Trajectory connecting a L2 planar Lyapunov orbit of the SE system (CSE=3.00077) with the L2

Lyapunov of the EM system (CEM=3.18). The picture on the top shows the xyẋ representation, and the ∆v
can be clearly seen. The figure on the bottom contains the xyẏ representation of the same trajectory, with
no jump in the ẏ direction.
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Figure 5.7: For values of φEM bigger than π (180 degrees), the unstable manifolds of Lyapunov orbits
around L2 in the EM problem do not intersect on the section with the stable manifolds of Lyapunov orbits
around L2 in the SE problem.

With these assumptions, explorations show that for each pair of Jacobi constants in CSE ×
CEM ∈ [3.000723, 3.0008622] × [3.145, 3.184], there exists at least one φEM ∈ (0, π) for which
an intersection in (x, y, ẏ) can be found between the first cut of the unstable manifold of the
Lyapunov of the EM problem with S and the first cut of the stable manifold of the Lyapunov
of the SE problem with the same section. This is a promising result, as a wide range of Jacobi
constants is covered (remember that the ranges of C that allow us to work with the Linstedt-
Poincaré expansions for Lyapunovs around L2 are [3.000721, 3.0008969] and [3.14445, 3.184163]
respectively).

Information of some example trajectories found using this method is presented in table 5.2.
For each couple φEM and αSE, the connection with lower ∆ẋ cost, the one with smaller αEM in
the corresponding family and, finally, the one with shorter transfer time (also belonging to the
same family) are included in the table.

Note on the choice of φSE and the computation of connecting trajectories for φSE 6= 90

The relative configuration is a key element when coupling two different models. In our case, this
configuration is determined by two phases: φEM and φSE, which represent the angles between
the x axis and the Poincaré section in each of the RTBPs. The aim of this part of our work is
to show that connecting trajectories with small ∆v exist between both models and to expose a
complete methodology suitable for finding such trajectories. With this idea in mind, we chose a
representative case (φSE = 90 degrees) and we claim that the same technique is applicable for
other values of φSE. The choice of this particular value as the angle of the Poincaré section in
the SE problem is due to the fact that the manifolds we study cross the plane defined by this
angle (perpendicular to the x axis) in a transversal way, which is good in terms of the shape and
relative positions of the curves cutting the section, and therefore for the search of intersecting
points. In addition, this particular plane has a fixed value of the x coordinate (in adapted SE
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φEM (deg.) αSE (km) αEM (km) ∆ẋ (m/s) time (days)

30
355162.5

17123.2 19.07 204.8
7390.3 37.67 201.9

14414.6 23.65 201.2

342740.1
17123.3 11.88 199.4
8218.2 30.24 200.2

14887.0 15.88 199.4

330102.8
17123.2 3.76 197.7
9123.9 21.69 198.5

15804.2 6.29 197.7

317215.5
14556.0 0 196.1
10142.9 12.52 196.9
15804.2 -2.73 195.9

290520.0
15086.8 -0.0002 195.3
12622.5 -11.5 193.8
17123.2 -29.14 192.6

276603.8
17123.2 -24.26 194.1
14402.0 -30.48 192.1
17123.2 -45.16 191.1

60
361302.0

17123.2 46.81 200.6
5179.6 68.89 201.0

12515.5 -55.29 200.4

355162.5
17123.2 43.63 199.7
5570.8 65.7 200.1

12854.1 51.22 199.5

342740.1
17123.2 36.73 197.9
6385.7 58.97 198.4

13436.4 43.59 197.8

330102.8
17123.2 29.06 196.1
7249.7 50.60 196.7

14550.6 34.11 196.0

317215.5
17123.2 20.49 194.4
8223.8 42.49 195.1

14001.2 27.01 194.3

290520.0
16627.7 0 191.1
10471.2 21.44 191.9
17123.2 1.88 191.0

276603.8
12975.0 0 189.7
11855.8 6.6 190.3
17123.2 -13.38 189.3
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φEM (deg.) αSE (km) αEM (km) ∆ẋ (m/s) time (days)

90
330102.8

17123.2 62.08 194.4
4457.6 89.80 194.8

10971.2 74.77 194.2

317215.5
17123.2 53.72 192.7
5374.8 81.43 193.1

12251.5 64.29 192.5

290520.0
17123.2 35.30 189.3
7500.9 60.08 189.9

13436.4 43.14 189.2

276603.8
17123.2 22.30 187.6
8741.7 50.45 188.3

14887.0 28.29 187.5

262216.4
17123.2 9.88 185.9
10166.5 35.24 186.6
14887.0 15.43 185.9

247265.9
15048.1 0 184.3
11956.2 17.61 185.1
17123.3 -8.06 184.2

120
330102.8

17123.2 110.34 192.7
288.0 146.156 192.6

8775.8 129.82 192.2

317215.5
17123.2 101.65 190.9

651.0 138.17 190.9
8775.8 121.55 190.5

290520.0
17123.2 81.73 187.5
2692.0 119.42 187.6
9555.3 101.09 187.2

262216.4
17123.2 57.07 184.0
5141.4 95.79 184.4

11625.2 72.97 183.8

231633.6
16250.7 26.8 180.5
8431.5 62.48 181.1

14887.0 31.82 180.4

215161.1
16897.2 0 178.6
10844.2 40.89 179.5
17123.2 -1.15 178.6

197627.8
15707.5 0 178.0
15310.9 9.23 178.3
17123.2 -18.18 177.6

Table 5.2: Connecting trajectories for φSE=90 deg. For each φEM and αSE (first and second columns
respectively) data corresponding to three different transfers is presented: the first one corresponds to the
cheapest possible connection, the second one to the connection with the smallest possible Lyapunov around
the EM L2 point and finally, the third one to the connection with shortest transfer time.
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φSE (deg.)
φEM (deg.) 60 70 80 90 100 110 120

30
89.16 58.91 22.67 3.76 55.84 119.27 191.36
96.17 69.48 – 21.67 75.81 139.72 211.22

40
92.57 64.68 14.96 11.59 64.86 128.98 201.34
84.33 52.71 – 30.80 86.03 150.59 222.36

50
78.74 45.74 6.47 19.99 74.48 139.37 212.08
88.46 59.36 – 40.76 97.08 162.35 234.43

60
72.27 53.42 2.96 29.06 84.85 150.59 223.74
83.78 37.84 16.50 51.62 109.12 175.13 247.57

70
64.74 28.84 8.23 38.97 96.13 162.81 236.48
78.45 – 13.53 63.66 122.35 189.14 262.00

80
55.94 18.51 0.96 49.89 108.52 176.26 250.57
72.36 – 25.46 77.11 137.01 204.64 277.96

90
45.58 6.55 11.31 62.08 122.30 191.23 266.31
65.36 – 39.08 92.27 153.43 221.93 295.75

100
33.25 7.45 23.10 75.86 137.85 208.14 284.17
57.27 20.92 54.80 109.57 172.03 241.43 315.78

110
18.42 9.49 36.73 91.71 155.69 227.58 304.80

– 24.04 73.17 129.56 193.32 263.63 338.50

120
0.29 4.06 52.81 110.34 176.64 289.17 329.26
– 44.03 94.97 152.99 218.03 250.49 –

Table 5.3: Maneuvers in m/s (in ṙ) corresponding to the intersecting points between the unstable manifold
of the Lyapunov orbit around L2 in the EM problem with αEM = 17123.2 km and the stable manifold of
the Lyapunov orbit around L2 in the SE problem with αSE = 330102.8 km, depending on different values
of the initial configuration phases (φSE and φEM ) (the rṙ projections on the Poincaré section of some of
these intersections are shown in figure 5.8). This table shows that the results in terms of ∆v are strongly
dependent on the chosen values of φSE and φEM , and that the values of φSE between 70 and 90 degrees
seem to be the most convenient ones.
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coordinates), simplifying the methodology a little bit.
Furthermore, we must remark that the results are strongly dependent on the choice of the

initial configuration, as we are not dealing with a single system of differential equations (and
thus, the unicity of solutions with respect to initial conditions does not hold). That is to say that
results shown in table 5.2, for instance, are only valid when the corresponding φEM and φSE are
used. This fact is, actually, consequence of the obvious influence that the relative position of the
Earth and the Moon have in the behaviour of the manifolds. Therefore, if this work was to be
used for practical reasons in the future, studies on each particular initial configuration should be
carried on, using the methodology that is presented here.

In figure 5.8 and table 5.3, an example proving that the methodology can be used for other
values of φSE is presented. The variation of both the intersecting points on the section and the
costs of the maneuvers depending on φSE can also be observed.

5.2.6 Families of connecting trajectories

If we find a connecting trajectory between the SE and the EM RTBPs, we can find another one,
close to the former, by slightly varying either one of the Jacobi constants or φEM . This is due to
the continuity of the solutions of each problem with respect to the initial conditions. So, instead
of isolated connections we find a kind of manifold of connecting trajectories. Another way to
explain it is by representing the connections grouped in families or bifurcation diagrams. In order
to visualise these families we can fix the angle φEM (remember that φSE is already fixed to 90
deg) and vary the Jacobi constants for both problems. For instance, in the picture on the top of
figure 5.9 some families of connections are depicted for the particular case φEM = 60 deg. The
x-axis corresponds to the Jacobi constant of the EM problem, while the y-axis corresponds to
the y coordinate of the connecting point on the section. Each one of the curves is obtained for
a particular value of the SE Jacobi constant. On the other hand, in the bottom of the same
figure, the same families are represented, but now the y-axis shows the ∆v that is needed in the ẋ
direction for the connecting trajectory to become a transfer path between both models. Similar
plots can be obtained for any value of φEM < 180 deg (see for example figure 5.10).

In order to better understand the way that each of the curves in figures 5.9 and 5.10 are
obtained, see figure 5.11. The big green curve of the picture on the left qualitatively represents
the first intersection of the stable manifold of a Lyapunov orbit around L2 of the SE problem
with the Poincaré section, for a given CSE. Besides, the small ellipse-like curves represent the first
intersection of the unstable manifold of several Lyapunov orbits around L2 of the EM problem
with section S, for four different values of CEM . Curves labelled with numbers from 2 to 4 intersect
the SE curve in two points. The y coordinate of these intersecting points is represented in the
picture on the right and varies slowly as CEM increases. Finally, the number of intersections
changes from two different values to only one for the curve labelled as number 1. This curve
represents a tangency between the EM and the SE manifold curves in the picture on the left,
which in turn is the final point for the curve on the right. That is to say that for values of CEM
bigger than the ones corresponding to curve number 1, the unstable manifold of the EM Lyapunov
orbits does not intersect the stable manifold of the SE Lyapunov represented on the section.
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Figure 5.8: rṙ projection of several intersections between the stable manifold of the planar Lyapunov orbit
around L2 of the SE problem with αSE = 330102.8 km (in green) and the unstable manifold of the planar
Lyapunov orbit around L2 of the EM problem with αEM = 17123.2 km (in red). First row: φEM = 30 deg.
Second row: φEM = 60 deg. Third row: φEM = 90 deg. Last row: φEM = 120 deg. The columns
correspond to fixed values of the φSE equal to 80, 90 and 100 degrees respectively. The red curve is the
same in the three pictures of each row, while the green curve is maintined in the columns. Note that if
r =

√

(x+ 1 − µ)2 + y2, the rṙ projection corresponds to the yẏ projection when φSE = 90 deg.
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Figure 5.9: (top) Families of connecting trajectories. Angle φSE is fixed to 90 degrees, and φEM to 60
degrees. The x-axis corresponds to values CEM and the y-axis to the y coordinate of the trajectories on S.
Each bifurcation curve corresponds to a particular value of CSE. (bottom) Same families of connections as in
the figure above. Now the y-axis presents the cost in m/s of the ∆v necessary in the ẋ direction for jumping
from the manifold of the SE problem to the manifold of the EM one.
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Figure 5.10: Another example of different families of transfer trajectories as in figure 5.9. This time φSE
and φEM are fixed to 90 deg.



Chapter 5 Transfer trajectories between the Sun-Earth and Earth-Moon L2 regions 120

1

3
2

4ẏ
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Figure 5.11: Section cut of the SE manifold for a fixed CSE and cuts of the EM manifolds varying CEM
(see more explanations in the text).

5.2.7 Zero cost connecting trajectories

In addition to presenting important information about the families of connections in an organised
way, another important fact can be observed in figures like 5.9 or 5.10. In the bottom part of
these figures, the cost in m/s of the ∆v necessary for the connecting trajectory to become a
complete transfer is not depicted in absolute value but with its sign according to equation (5.5).
This fact allows us to realize that in certain families, some of the connections need a positive ∆v
while some others need a negative one. Thus, the zero-cost line is crossed somehow. This means
that for particular Jacobi constants and coupling angles, the manifolds of the coupled SE and
EM RTBPs intersect both in position and velocity coordinates, with no need for a maneuver at
all.

If a single model had been used, a complete intersection in the state space for a given epoch
would mean that the part of the trajectory coming from the lunar libration region and the part
that approaches the solar libration one are indeed the same solution. Note, however, that in
our case the complete intersection has a different meaning, as two different models (and their
corresponding flows) are being used. Therefore, these zero cost connections do not represent
real solutions of the 4 body problem, neither do they follow physical laws. Despite this fact, if
the intersection between the manifolds is transversal enough, it may be robust with respect to
perturbations. The real 4 body model for the Sun-Earth-Moon-spacecraft relative movements can
be seen as a perturbation of our simplified model. Consequently, having a complete intersection
in the phase space between the coupled RTBP models can result in very low cost connecting
trajectories in more realistic models. Thus, it is worth studying the initial conditions which lead
to these so-called zero cost transfers.

Determination of the initial conditions for a zero cost connecting trajectory.

Given φSE and φEM , we know how to compute connecting trajectories between planar Lyapunov
orbits for each value of the Jacobi constants. In this way, we obtain pictures like the ones in
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figures 5.9 and 5.10. We realized from these pictures that some of the curves representing the
connecting trajectories cross the ∆v=0 line. We now want to determine the initial conditions
which lead to connecting trajectories with ∆v=0. Let us concentrate on a particular example.
For instance, φSE = 90 deg., φEM = 60 deg. and CSE = 3.00079 (see figure 5.9).
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Figure 5.12: Detailed view of the cost curve corresponding to CSE = 3.00079 in figure 5.9.

In figure 5.12 one of the curves of figure 5.9 that crosses the zero cost line is represented in
more detail. We can determine by observing this detailed figure the values of the Jacobi constant
of the Earth-Moon problem between which the sign of ∆ẋ is changed (i.e. the ∆ẋ = 0 line is
crossed). In other words, we can find two values of C, one corresponding to a positive ∆v, which
we note C+, and the other one to a negative ∆v, C−. In our example, we can take for instance
C− = 3.158 and C+ = 3.162. Using these values, C+ and C−, a zero finding procedure can be
started.

Let φSE and φEM be fixed. Let F be,

F : [3.145, 3.185]× [3.00073, 3.00089] → R
2, F (CSE, CEM) = (∆ẋ1,∆ẋ2)

such that for each couple of Jacobi constants, it gives the ∆ẋ maneuvers corresponding to the
intersections between the manifolds of the Lyapunov orbits defined by these C, computed on the
Poincaré section. Note that F takes values on R

2 when two cuts occur between the aforementioned
manifolds on the section (see figure 5.11). Remark also that applying F to a couple of Jacobi
constants is equivalent to applying it to a couple of Lyapunov orbits, due to the unique existence
of these orbits for each level of energy. Furthermore, each Lyapunov orbit is parametrised by a
phase. Consequently, F is applied to a couple of Jacobi constants, but it implicitly depends on
the phases that represent the connecting trajectories.

We restrict F to the chosen value of CSE. In our example, CSE = 3.00079. In addition, we
select the correct branch of connecting trajectories, that is the one containing the intersection
with ∆v = 0. So, the restriction of F becomes,

F ∗ : [3.145, 3.185]× {3.00079} → R.
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Now a zero finding procedure applied to F ∗ allows us to compute a Jacobi constant for the
EM problem, C0, such that F ∗(C0) = 0. In fact, an iterative zero finding method does not
provide the exact C0 but a good approximation to it for i big enough such that |F ∗(Ci+1)| < δ1
or |Ci+1

− − Ci+1
+ | < δ2 (with δ1 and δ2 given tolerances, which we take from 10−12 to 10−14)

Once the Jacobi constants that lead to the zero cost connection for each one of the problems
are known, the corresponding manifolds are integrated to the section. Finally, the set of initial
conditions that completely determine the zero cost connection is:

(φSE, φEM , CSE, CEM , θSE, θEM)
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Figure 5.13: Zero cost transfers or connecting trajectories (φSE = 90 deg). Red: CSE = 3.00073263,
CEM = 3.1703538, φEM = 50 deg. Green: CSE = 3.00081225, CEM = 3.156907053, φEM = 125 deg. Blue:
CSE = 3.00084025, CEM = 3.166630339, φEM = 170 deg.

The procedure for finding zero cost transfers can be applied whenever a change in the sign
of the ∆v occurs for a particular family of connections. Some example zero cost connecting
trajectories that were obtained in this way are represented in figure 5.13.

5.2.8 Families of zero cost connecting trajectories

To sum up, a method for exactly determining the initial conditions that represent a zero cost
connecting trajectory, once a crossing of the ∆v=0 line is detected, was presented in the previous
section. An essential condition before starting the zero finding method that leads to the zero cost
connection, however, is to perform a study of all connecting trajectories for a particular value
of φEM , and hope that some of the curves we obtain will cross the ∆v=0 line. Nevertheless,
we are interested in obtaining families of zero cost connections, rather than isolated ones. Our
experience in dealing with the restricted three body problem makes us think that this is possible,
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as the continuous dependency of the solutions on the initial conditions makes all phenomena
appear in families or manifolds.

Given φSE and φEM , let (CEM , CSE) be a couple of Jacobi constants for which a zero cost
connecting trajectory exists. These Jacobi constants define the Lyapunov orbits, which are, in
turn, parametrised by an angle, θ. Therefore, as we saw in the previous section, the complete set
of initial conditions characterising a zero cost connection is,

(φSE, φEM , CSE, CEM , θSE, θEM).

We take a set of initial conditions for which a zero cost connection exists and we start a
continuation method. That is, we want to find a new set (φSE, φEM , C ′

SE, C ′
EM , θ

′
SE, θ

′
EM), close

to the original one and such that it also leads to a zero cost connection. At the moment, we keep
the angles φSE and φEM fixed.

Before starting to explain the continuation method itself, let us describe in more detail the
application which integrates the initial conditions until they reach the Poincaré section. As we
said before, for each C there exists only one planar Lyapunov orbit, which in Lindstedt Poincaré
coordinates is defined by its amplitude, α. Therefore, the set (CSE, CEM , θSE, θEM) is equivalent
to (αSE, αEM , θSE, θEM). Now, the flow of the restricted three body problems is applied to each
couple (α, θ) (i.e. to each initial point on the Lyapunov orbit) in the following way,

ΦSE : R
+ × [0, 2π] → S

ΦSE(αSE, θSE) = (−1 + µSE, ẋs, ys, ẏs) ∈ S.

Ψ ◦ ΦEM : R
+ × [0, 2π] → S

Ψ ◦ ΦEM(αEM , θEM) = Ψ(x̄, ˙̄x, ȳ, ˙̄y) = (−1 + µSE, ẋl, yl, ẏl) ∈ S.
where ΦEM and ΦSE are the flows of the corresponding restricted three body problems, and Ψ is
the change of coordinates from Earth-Moon to Sun-Earth+Moon reference frame. Obviously, Ψ
depends on the angles φEM and φSE. Note that the time does not appear in the equation of the
flow, as the RTBP is autonomous.

Now, the problem of finding a zero cost connection is reduced to finding a zero of the following
function:

g(αSE, αEM , θSE, θEM) = (ẋl − ẋs, yl − ys, ẏl − ẏs). (5.6)

We will apply a Newton-like method to g, as it is not difficult to compute all necessary
information about the differentials of all the functions that are used. Actually, it is straightforward
to compute the differential of Ψ, as it only consists of a rotation, a translation and a scaling of the
magnitudes. Furthermore, the differential of the flow functions is essentially computed by using
the first variational equations and slightly correcting them on the section. Thus, we can easily
obtain the differential matrix of g. However, the dimension of this matrix is 3 × 4, as in (5.6)
we have 3 equations but 4 variables. Therefore, the generalisation of the 1-dimensional Newton
method cannot be used, as it applies to square matrices.
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Let xz = (αSE, αEM , θSE, θEM) represent a zero cost connection, g(xz) = (0 0 0)t. Remember
that the Kernel of the linear application with matrix Dg(xz) is the set,

Ker(Dg(xz)) = {w ∈ R
4 | Dg(xz)w = (0 0 0)t}.

The maximum range of the matrix Dg(xz) is 3. Therefore, the dimension of Ker(Dg(xz))
has to be greater or equal than one. This means that ∃ w ∈ R

4 such that Dg(xz)w = (0 0 0)t

and w 6= (0, 0, 0, 0). In other words, Ker(Dg(xz)) 6= {(0, 0, 0, 0)}. Take v ∈ R
4 such that v ∈

Ker(Dg(x0)), v 6= (0, 0, 0, 0). Now take x ∈ R
4 close to xz, x = xz + εv with ε << 1.

For x we have that,

g(x) = g(xz) + εDg(xz)v +O(ε2) (5.7)

g(x) = 0 + 0 +O(ε2)

g(x) is small. We want to correct x in order to obtain x∗ such that g(x∗) = (0 0 0)t and x∗ is
close to xz.

So, we set x0 = x and iteratively correct x in the following way,

xi+1 = xi + ∆xi

with ∆xi = (∆iαSE,∆
iαEM ,∆

iθSE,∆
iθEM).

As we already explained, ∆xi cannot be directly computed by using a Newton method, as
the corresponding differential matrix is not square. Therefore, we use the Lagrange multipliers
method and consider minimum norm corrections at each step. That is to say that for each i we
look for a ∆xi satisfying:

1. Dg(xi)∆xi + g(xi) = 0 (Newton like condition),

2. ‖∆xi‖2 = min∆x∈W‖∆x‖2, where W ⊂ R
4 is the set of vectors satisfying the previous

condition.

In this way, we need a vector multiplier λ ∈ R
3. The Lagrange function that we have to

minimise is:

G : R
4 × R

3 → R

G(∆xi, λ) = ‖∆xi‖2 + λ(Dg(xi)∆x+ g(xi)).

Equivalently, we have to solve the following system of linear equations,

∂g

∂∆xj
(xi) = 0, j = 1, 4,

∂g

∂λj
(xi) = 0, j = 1, 3.

(

2Id4×4 DgT

Dg 03×3
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This method quickly converges to x = (α′
SE, α

′
EM , θ

′
SE, θ

′
EM) such that g(x) = 0. From this

new zero cost connection represented by x, the continuation procedure can be started again, until
the limiting values of the amplitudes related to the good convergence of the Lindstedt-Poincaré
series are met. In this way, we obtain the curves represented in figure 5.14. Each curve represents
the zero cost connections between Lyapunov orbits for φSE = 90 degrees and the values of φEM
indicated. Both pictures in this figure are equivalent, due to the aforementioned correspondence
between C and α. In the picture on the top, the curves represent couples of Jacobi constants
linked by zero cost connections, while in the picture on the bottom the same connections are
represented in terms of the amplitudes α, in km, of the corresponding planar Lyapunov orbits.

So, we already know how to obtain a family of zero cost connections for fixed φSE and φEM ,
provided that a crossing of the zero-cost line has been detected when representing the connecting
trajectories for the initial configuration represented by these phases. However, it would be inter-
esting to be able to find zero cost connections more independently. That is, without having to
perform all the previous explorations and computations leading to figures like 5.9 or 5.10.

For instance, given one of the curves of zero cost connecting trajectories containing either
points of the type (CSE, CEM , θSE, θEM) or (αSE, αEM , θSE, θEM), for a particular value of φEM ,
one can think of changing this φEM and finding a new curve of zero velocity connections. A simple
way of doing this is the following,

1. Choose a new value φ′
EM , close to φEM for which the curve of zero cost connections has

already been found.

2. Take α′
SE (respectively C ′

SE) close to one of the αSE of the aforementioned curve of zero
cost connections and fix it.

3. Start a Newton method with (α′
SE, αEM , θSE, θEM), in order to find a zero of

g(α′
SE, αEM , θSE, θEM). Note that if α′

SE is fixed, g depends on three variables. Therefore,
the usual Newton method can be used in this case, as Dg becomes a square matrix.

If a zero cost connection exists for the values we have fixed of φEM and α′
SE, the Newton

method will converge to it. Afterwards, the continuation method using Lagrange multipliers
that we explained above can be used again to obtain the whole curve of zero cost connecting
trajectories corresponding to the new φEM . However, we have blindly chosen α′

SE and φ′
EM .

Therefore, it may happen that no zero cost connecting trajectory exists for these values. In this
case, we change our choices and try again. This method is not as robust as the one starting by
an already found zero cost connection. However, it has the advantage of allowing us to proceed
without having to find all the connecting trajectories for each particular φEM and looking for
intersections with the ∆v = 0 line. It is the combination of these two strategies which allowed us
to obtain figure 5.14.
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Figure 5.14: Families of zero cost connecting trajectories from planar Lyapunov orbits around the lunar L2

and the same kind of orbits around the solar L2 point. (top) pairs of Jacobi constants linked by zero cost
transfers in the coupled RTBPs model. (bottom) same zero cost connections, but represented in terms of the
amplitudes, in km, of the corresponding Lyapunov orbits. The x axis of the figures refers to the SE problem,
while the y axis to the EM problem. The angle φSE is fixed to 90 degrees, while the number labelling each
one of the curves corresponds to the value of φEM in degrees.
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5.3 Connecting trajectories between Lissajous orbits

5.3.1 Introduction

In the previous section we studied connecting trajectories from planar Lyapunov orbits of the
Earth-Moon L2 to planar Lyapunov orbits of the Sun-Earth one. These trajectories mainly have
a theoretic interest, confirming the existence of natural channels between both problems, and
allowing us to better understand the behaviour of the transfer trajectories and to test some tools
for their computation. However, our work is aimed at applications in mission design. Therefore,
we need models which are more accurate than the planar approximations to the Sun-Earth and
Earth-Moon systems. To start with, we will use three dimensional RTBPs. Concerning the orbits,
we use 3-dimensional Lissajous orbits.

Once the connecting trajectories have been computed using two coupled RTBPs, another big
step has to be taken, which is the refinement of the trajectories to a realistic ephemeris model.
In this work, we have used a JPL ephemeris model. One of the most relevant differences between
a RTBP model and an ephemeris model is that a realistic model is no longer autonomous. This
implies that the results are dependent on the times chosen for the refinement.

5.3.2 Lissajous orbits and their hyperbolic manifolds

Lissajous orbits are quasi-periodic motions around the libration points. They are the composition
of two oscillations: one in the plane of relative motion of the primaries (known as in-plane

oscillation), and another oscillating movement perpendicular to this plane (known as out-of- plane

oscillation). A more detailed description of these orbits can be found in chapter 3. Remember,
however, that the linear approximation to these orbits and the manifolds arising from them
provides us with useful information:

x(t) = A1e
λt + A2e

−λt + Ax cos (ωt+ φ)
y(t) = cA1e

λt − cA2e
−λt + k̄Ax sin (ωt+ φ)

z(t) = Az cos (νt+ ψ)







(5.8)

(ẋ, ẏ, ż) are obtained from this expressions by differentiating with respect to t. (A1, A2, Ax, Az)
are called amplitudes and characterise the orbit. On the other hand, phases φ and ψ represent
the point on this orbit at t = 0. That is:

• A1 and A2 are called hyperbolic amplitudes. When both of them are zero, a point on the
central manifold is obtained. In our case, a point on the Lissajous orbit, is obtained.

• Ax and Az are the central amplitudes. They indicate the amplitude of the aforementioned
in-plane and out-of-plane oscillations. Furthermore, these two amplitudes are independent
from each other, in a range which depends on the Jacobi constant. That is to say that
the in-plane and out-of-plane oscillations can be chosen to be similar in amplitude, or,
on the contrary, one of them can be much more elongated than the other. Actually, this
property implies an operational advantage of Lissajous orbits over the traditionally used
Halo orbits. Remember that Halo orbits appear when a particular relationship between
the frequencies of the oscillation is satisfied, and this results in a particular relationship
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between the amplitudes, usually one of them being much bigger than the other one. For
real missions, this fact implies long excursions of the satellite in one of the directions, which
are not always desired.

• When A1 6= 0 and A2 = 0, the part containing positive exponential terms in forward time
in equations (5.8) survives. Therefore, the solution goes away exponentially fast from the
central part. We say that a point on the unstable manifold of the Lissajous orbit defined
by Ax and Az is obtained in this case.

Respectively, when A1 = 0 and A2 6= 0, the solutions approach the Lissajous in forwards
time, as they contain negative exponential terms, and we get a point on the stable manifold
of the Lissajous orbit.

Therefore, Ax and Az characterise the size of the Lissajous, while A1 and A2 tell us whether the
points are on the central or the hyperbolic manifolds. Finally, φ and ψ represent each particular
initial point on the solution defined by these four amplitudes.

5.3.3 Coupling between the two Restricted Three Body Problems

As we saw for the planar case, a convenient way of tackling the four body problem Sun-Earth-
Moon-Spacecraft is to decouple it in two different restricted three body problems: the Sun-
Earth+Moon RTBP (SE) and the Earth-Moon one (EM). Furthermore, we use the SE problem
as general reference frame. Therefore, the natural thing to do is to deploy the Earth-Moon RTBP
inside the Sun-Earth+Moon model.

Remember that the small primary of the SE somehow represents the Earth and the Moon
together in the point (1-µSE, 0, 0). In fact, this point is the barycenter of the EM system. Then,
this barycenter, which in the EM adapted coordinate frame acts as the origin of coordinates,
circles the Sun at a constant angular rate on the ecliptic plane, completing a revolution every
year. The Earth and the Moon, in turn, are assumed to circle around their common center of
mass, in a plane with fixed small inclination with respect to the ecliptic. Finally, the position of
the Moon with respect to the Sun-Earth axis is described by two angles (see figure 5.15):

• α: the angle from the axis joining the Sun and the Earth-Moon barycenter to the line of
nodes of the Moon orbit, measured on the ecliptic plane.

• β: the angle from the line of nodes to the position of the Moon, measured on the plane of
motion of the Moon around the Earth, or the plane of relative motion of the Earth and the
Moon (mean longitude of the Moon).

Relation between (α, β) and the Sun-Earth-Moon angle, γ.

The relative configuration of the Sun, the Earth and the Moon at a given moment of time is
usually described by a single angle, rather than the α and β that we defined. The Sun-Earth-Moon
angle, γ, can be defined in the following way:

• Let P be the instantaneous plane of relative motion of the Earth and the Moon.

• Let r be the vector joining the Earth-Moon barycenter and the Sun.
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Figure 5.15: Coupling of the RTBPs. The figure shows the three angles which relate the SE coordinate
frame with the EM one: i (inclination), α and β.

• r can be projected on P and r′ is obtained.

• Let OX be the axis joining the Earth and the Moon.

• Now, define the Sun-Earth-Moon angle, γ, as the angle between OX and r′, measured
counterclockwise on P .

Simple geometrical considerations allow us to transform γ to (α, β) and the way back (see
figure 5.15 and 5.16).

In spite of this geometrical simplicity, the transformation involves cumbersome algebra, which
has been omitted in this dissertation.

5.3.4 Poincaré section

If we work with three dimensional RTBPs, the state space becomes 6 dimensional. In this case,
a Poincaré section is a set of points of the form

S = {X = (x, y, z, ẋ, ẏ, ż) ∈ R
6 | g(X) = 0},

with g : R
6 → R. Remember that Poincaré sections are used, in general, to study the flow of

a system of differential equations in a lower dimensional space. The use of Poincaré sections is
convenient again in this part of our study.

Our goal is to use the unstable manifold of a Lissajous orbit belonging to one of the models and
integrate it until it meets the stable manifold of a Lissajous orbit of the other model. The Poincaré
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Figure 5.16: Coupling of the RTBPs. The figure shows the angle Earth-Moon-Sun (γ).

section will be used as the meeting point. Once S has been chosen, initial conditions on the
stable (respectively unstable) invariant manifold of a particular Lissajous in the Sun-Earth+Moon
system (respectively Earth-Moon) can be integrated backwards (respectively forwards) in time
until they intersect S.

As for the planar case, we take S = {X | x = −1 + µSE} (in SE coordinates). This plane
forms a fixed angle of 90 degrees with the SE x-axis and contains the Earth-Moon barycenter,
which is the EM origin of coordinates.

Moreover, the RTBP model is autonomous. That is to say that time is not explicit in the
equations of motion. Therefore, we can set t = 0 whenever we want. For the sake of simplicity,
we choose t = 0 to be the moment when the manifolds intersect the section S. As we explained
above, each relative configuration between the SE and EM problems is defined by two angles: α
and β. At time t = 0 is when the coupling between both problems is the one shown in figure 5.15.
Let us discuss how this configuration changes with respect to time.

S is fixed in the SE coordinates. However, as it happened for the planar case, S is time
dependent in EM coordinates. In fact, the EM x-axis rotates in the plane of motion of the Moon
and the Earth, completing a revolution every month, and this modifies the angle β. Therefore
β̇ = 2π

27.3216
(rad/day), as 27.3216 days is the average time for the mean longitude of the Moon to

increase 2π radians. In addition, the Earth-Moon line of nodes also rotates with respect to the
Sun during the year, affecting angle α. In addition to the rotation of the Earth-Moon barycenter
on the ecliptic, which makes the angle between the line of nodes and the SE x-axis vary in a
clockwise direction (retrograde), the phenomenon known as regression of the nodes has to be
taken into account, too. Consequently, the final average rate of variation of α is the addition of
these two regressions: α̇ = −2π( 1

365.2536
+ 1

18.5995×365.2536
) (rad/day), as the cycle of regression of

the lunar nodes has an average period of 18.5995 years.
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The rates β̇ and α̇ allow us to know the relative configuration of both problems at each moment
of time. This knowledge is useful, for instance, when changes of coordinates at moments of time
t 6= 0 are necessary.

5.3.5 Intersections on the Poincaré section

We aim at finding transfer trajectories between Lissajous orbits in the coupled model, given an
initial configuration. We know that hyperbolic manifolds provide a way of quickly going away
or, on the contrary, approaching a Lissajous orbit. Our intention, then, is to find intersections
between the stable manifold of one of the Lissajous and the unstable manifold of the other one,
as such intersections provide a natural way of leaving the vicinity of the first Lissajous and
approaching the other one. For this purpose, there are two possible senses of motion: from the
EM Lissajous to the SE one, and the other way round. In this work, the EM to SE sense has
been chosen. This means that we will use the unstable manifold of the EM orbit (because it goes
away from the vicinity of L2), and the stable manifold of the SE orbit (as it approaches it). For
the way back, that is from SE to EM libration regions, exactly the same methodology could be
applied and similar results would be obtained.

Remember that a state on one of the hyperbolic manifolds of a Lissajous orbit is represented
in Lindstedt Poincaré coordinates by four amplitudes and a couple of phases. Let (Ax, Az)SE

be the central amplitudes defining the Lissajous around L2 in the SEM system, and (A′
x, A

′
z)EM

the amplitudes defining the Lissajous around L2 in the EM system. The hyperbolic amplitudes,
A1 and A2 are set to 0 or ε, depending on whether the manifold is stable (SE) or unstable
(EM). Finally, in order to obtain a set of initial conditions representing the whole manifold of the
Lissajous orbit in both RTBPs, we take a discrete set of (φi, ψj) ⊂ [0, 2π]x[0, 2π], i = 1.. n1, j =
1.. n2.

Consequently, the sets of initial conditions that we have are:

• (0, ε, Ax, Az, φi, ψj)SE, i = 1..n1, j = 1..n2, for the stable manifold of the SE Lissajous
orbit.

• (ε, 0, A′
x, A

′
z, φ

′
i, ψ

′
j)EM , i = 1..n′

1, j = 1..n′
2, for the unstable manifold of the EM Lissajous

orbit.

where ε << 1 represents the distance on the hyperbolic manifold, from the quasi-periodic Lis-
sajous orbit to the point which is used as initial condition.

We integrate the SE initial conditions backwards in time, until they intersect S. EM conditions
are integrated forwards in time in the EM system, until they also intersect S. However, the
Poincaré section is given in SE coordinates and the integrated points coming from the lunar
region are in EM coordinates. There are two possible ways of coping with this problem. The first
is to find the expression of S in EM coordinates, according to the relative configuration at t = 0.
Once the cut has been found in EM coordinates, the inverse change of coordinates is applied to
the resulting intersecting points, in order to have them in the same coordinate frame as the SE
ones. One could also think of not transforming the section, but transforming the integrated points
at each step to SE coordinates until the cut with S in SE coordinates was found and refined.
This second option requires many more changes of coordinates, with the consequent increase in
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computational time that this implies. For this reason, the first approach has been used in the
present work.

Now that we know which are the steps we have to follow to obtain the cuts of the manifolds
with the Poincaré section, it is time to look for intersections between them. In the 3-dimensional
models, intersections on S are not curves as it happened for the planar models. Any planar projec-
tion of the intersections we are dealing with is 2-dimensional. In addition, complete information
about the state space cannot be derived from any of the possible planar projections. In a planar
projection there is only information about two coordinates. Therefore, four coordinates are still
free. Furthermore, the Jacobi constant provides another relation between these 4 coordinates.
The function defining the section provides another one. All in all, always two degrees of freedom
remain unsolved when looking at the aforementioned projections1.

Therefore, one has to make some more considerations before knowing how to take advantage
of a planar projection of the intersection of the manifolds with S. As it is well known, differences
in velocity can always be adjusted by an adequate ∆v. However, deviations in position cannot
be dealt with in the same way, as maneuvers do not produce a change in positions. Therefore, if
connecting trajectories between the Lissajous exist, they have to be coincident in positions on the
section. Nevertheless, on the Poincaré section x is fixed to x = −1 + µSE. So, points that belong
to the intersection of the manifolds in the yz projection of the cuts with S represent complete
intersections in position between the SE manifold and the EM one. Consequently, connecting
trajectories between the Sun-Earth L2 region and the Earth-Moon L2 region can be found by
studying overlapping regions in yz coordinates on S. A ∆v will be associated with each of these
connecting trajectories, as the overlapping occurs in positions, not in velocities.

For some values of the amplitudes in both sides, no intersecting region exists on the section.
However, for some other values, we get an overlapping like the one depicted in Fig. 5.17. The red
points represent the intersection of the EM unstable manifold with S, while the green ones belong
to the stable manifold form the SE Lissajous orbit. Note that in the picture the discreetisation
performed on the phases can be observed. Points with the same φ and consecutive ψ have been
joined by segments, forming the vertical curves that we observe in the figure, γi = {(φi, ψj), j =
1, n2}. On the other hand, as the in-plane phase moves from i to i + 1, different curves are
obtained (γi, γi+1 . . . , i = 1, n1). The denser the grid we take, the closer the curves appear.

5.3.6 Computation of connecting trajectories between Lissajous or-
bits.

It seems clear from figure 5.17 that there exist connecting trajectories joining the pairs of Lissajous
that result in a yz overlapping in the coupled RTBPs. That is to say there exist initial conditions
both on the SE and the EM Lissajous that result in each point (y, z) of the aforementioned
overlapping regions once integrated to the section. However, we have discreetised the initial
conditions and probably a particular point in the region does not correspond to any of the points
on the manifolds that we have integrated and stored. Therefore, we somehow have to find the

1Note that for the planar case, the study of a planar projection on S was enough to obtain complete information
of the state space. If two coordinates, say y and ẏ were coincident on S, then x was obtained from the definition
of this section and ẋ from the Jacobi constant.
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Figure 5.17: yz projection of the stable manifold of a Lissajous in the SE system (in green) with amplitudes
(Ax, Az) = (184152.8, 301536.6) km and the unstable manifold of a Lissajous in the EM system (in red) with
amplitudes (Ax, Az) = (6560, 20000) km, at the crossing with the Poincaré section. The intersecting region
in position coordinates is contained in the black square.

exact phases that lead to (y, z), taking as a seed a couple of phases such that the point on the
section associated with (φ, ψ) is close to (y, z) (the same for the EM case, (φ′, ψ′)). Note that
only the phases play a role, whereas all the amplitudes remain fixed. The reason for this is that
we want the Lissajous orbit on the torus defined by (Ax, Az) to remain unaltered, and the same
for the distance from the Lissajous to the initial conditions on the manifolds, represented by the
hyperbolic amplitudes (A1, A2).

Let F1 and F2 be,

F1 : [0, 2π] x [0, 2π] ⊂ R
2 → R

2, F1(φ, ψ) = (y, z)SE,

F2 : [0, 2π] x [0, 2π] ⊂ R
2 → R

2, F2(φ
′, ψ′) = (y, z)EM .

F1 is the restriction in (y, z) of the Poincaré map, which is the integrated flow from the initial
point on the manifold defined by the phases (φ, ψ) to the Poincaré section in the SE case. F2,
in turn, is also the restriction in (y, z) of the Poincaré map for the EM case, but composed in
addition with the change of coordinates from EM to SE on the Poincaré section. In more detail,

F1(φ, ψ) = ΦSE
P ◦ ΨSE(φ, ψ)|y,z

F2(φ
′, ψ′) = ξ ◦ ΦEM

P ◦ ΨEM(φ′, ψ′)|y,z
where,

Ψ : R
6 → R

6, Ψ(A1, A2, Ax, Az, φ, ψ) = (x, y, z, ẋ, ẏ, ż),
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is the map which transforms amplitudes and phases into position-velocity points in the vicinity
of L2. As it has been said, we make the amplitudes remain fixed. Therefore we consider the
restriction of Ψ that acts only on the phases.

ΦP : R
6 → R

6, ΦP (x, y, z, ẋ, ẏ, ż) = (−1 + µ, yf , zf , ẋf , ẏf , żf),

is the integrated flow to the Poincaré section, obtained essentially by integrating the first varia-
tional equations of equations (2.1) and correcting them on the section.

And,

ξ : R
6 → R

6, ξ(x, y, z, ẋ, ẏ, ż)EM = (x, y, z, ẋ, ẏ, ż)SE.

is the change of coordinates from the EM coordinates to the SEM ones (a composition of rotation
and a translation, together with a scaling factor).

Given (y, z) on the section and (φ, ψ) such that F1(φ, ψ) and (y, z) are close to each other, we
can use a 2-dimensional Newton method on F1 and obtain (φ∗, ψ∗) such that F1(φ

∗, ψ∗)− (y, z) =
(0, 0). We can do the same for F2. It is clear from the definition of F1 and F2 that there are no
differentiability problems. In addition, if we store enough overlapping points, that is a narrow
grid of (φ, ψ) is used to obtain the cuts with the section, good seeds are available for any (y, z)
in the intersecting region. Therefore, a Newton method is an adequate and fast way to solve the
problem.

To sum up, the steps that we follow are:

1. Fix the relative Sun-Earth-Moon configuration at t = 0, by giving a value to the angles α
and β in figure 5.15.

2. Choose S, the Poincaré section.

3. Pick a Lissajous orbit around L2 in the SE system, and a Lissajous orbit around L2 in the
EM system by choosing their central amplitudes (Ax, Az)SE and (Ax, Az)SE .

4. Choose the direction in which we want to transfer from one orbit to the other.

5. Take a discrete set of points on the Lissajous orbits, given by a grid in (φ, ψ), and move along
the unstable (respectively stable) manifold using A1 and A2 to obtain the initial conditions.

6. Integrate the initial conditions on the invariant manifolds until they intersect S. For the
EM case, transform the points on the section to SE coordinates.

7. In case the manifolds do not intersect on the section, change some of the parameters in 1,
2 or 3.

On the contrary, if an overlapping exists, take a grid on the yz projection of the intersection
of the manifolds on S. For each point (y, z) on the grid, find the corresponding phases
(φ, ψ) and (φ′, ψ′) such that F1(φ, ψ) = F2(φ

′, ψ′) = (y, z), using a Newton method applied
to F1 and F2.
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8. Finally, the connecting trajectory is obtained by integrating the correct initial conditions
from both manifolds. Each connecting trajectory consists of two parts: the SE part, in-
tegrated with the SE RTBP equations, and the EM part, with the EM equations. Both
trajectories intersect the Poincaré section at the same point, to which we assign t = 0.

Note once again that the velocity vectors of the SE point and the EM point at the moment
when the manifolds intersect the section (t = 0) are not the same. The intersection, as we have
computed it, occurs only in positions. A ∆v is necessary if we want this intersection to take place
in the full state space.

More than one connecting trajectories through a particular point on the section

Sometimes it may happen that more than one connecting trajectory exists through a particular
point on the Poincaré section (−1 + µSE, y, z). This is because a couple (y, z) is not univoquely
determined by a pair of initial phases (φ, ψ), neither in the EM problem nor in the SE.

The uniqueness of the solutions of a system of ODEs given an epoch applies to the complete
state X = (x, y, z, ẋ, ẏ, ż). That is to say that given (t, X) there exists a unique couple (φ, ψ) such
that the trajectory with these initial phases goes through the point X at time t (for fixed A1,
A2, Ax and Az). Actually, as the RTBP is autonomous, time does not play an important role in
our case. Thus, given a point X = (x, y, z, ẋ, ẏ, ż) and four values of the amplitudes, there exists
a unique couple of phases (φ, ψ) on the corresponding hyperbolic manifold that are the initial
conditions for a trajectory containing X, but the time is not relevant and we can choose it to be
any value.

However, in this work we look at a projection of the cut in the Poincaré section and there is
some information that we are not aware of when picking (y, z): the velocity vectors. Therefore,
the fact that there exist several couples of initial phases leading to a particular point (x, y, z) on
the section does not contradict the uniqueness of solutions with respect to initial conditions, as
long as these points on the section have different velocity vectors, (ẋ, ẏ, ż).

Remember functions F1 and F2 that we defined in subsection 5.3.6. An intersecting point of
the (y, z) projection satisfies that there exist (φ, ψ) and (φ′, ψ′) such that F1(φ, ψ) = (y, z)SE =
(y, z)EM = F2(φ

′, ψ′). However, F1 and F2 are restrictions of another application, F , which
takes each point on a hyperbolic manifold of a Lissajous orbit (described in Lindstedt-Poincaré
coordinates) and integrates it until it reaches S. Thus, F is the composition of the Poincaré map,
ΦP , with the application that transforms Lindstedt-Poincaré coordinates to RTBP points, Ψ,

F : R
6 → R

6, F = ΦP ◦ Ψ

F(A1, A2, Ax, Az, φ, ψ) = ΦP ◦ Ψ(A1, A2, Ax, Az, φ, ψ) =

= ΦP (x0, y0, z0, ẋ0, ẏ0, ż0) = (−1 + µSE, y, z, ẋ, ẏ, ż),

where (x0, y0, z0, ẋ0, ẏ0, ż0) represents the initial point on the manifold in the adequate coordinate
frame.

Once the amplitudes (hyperbolic and central) have been fixed, F is an injective application.
This is a consequence of the aforementioned uniqueness of solutions in the complete state space,
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as well as the fact that Lindstedt-Poincaré coordinates univoquely determine the points on the
Lissajous orbit and manifolds.

Despite the injectivity of F , F1 and F2 are not injective applications. There can exist pairs
(φa, ψa) and (φb, ψb) such that F1(φa, ψa) = F1(φb, ψb), and the same for F2. It is important to
bear in mind that the images of these pairs of phases coincide in position but not in velocity.
Consequently, they lead to connecting trajectories which cross the section through the same point
in position, but need different adjusting maneuvers to complete the transfer.

Qualitatively, it is not difficult to determine the regions with different number of connecting
trajectories through each (y, z). For instance, see figure 5.18, which is a detailed view of the
black rectangle shown in figure 5.17. Observing how the manifold is folded on the section, we can
differentiate 3 different sectors in this figure, labelled as regions A, B and C.

Figure 5.18: Detailed view of figure 5.17. The regions labelled with A, B and C are different in terms of
number of connecting trajectories. A: no connecting trajectories, C: more connecting trajectories for each
(y,z) than in region B, as another fold in the green (SE) manifold is overlapping the region.

In order to learn how to count the number of connecting trajectories that go through each
(y, z), let us concentrate on the green curves we see in figure 5.17 that come from the discreetisation
performed on the initial conditions of the stable manifold of the SE orbit, and which we called
γi. Remember that for a given discreetisation on the in plane phase φ, {φi, i = 1..n}, we obtain
the corresponding curves

γi = {(x, y, z, ẋ, ẏ, ż) = F1(φi, ψ), ψ ∈ [0, 2π]}.

As a consequence of the aforementioned uniqueness of the solutions of a system of ODEs, γ i∩γj =
∅ in R

6. However, curves γi appear as being folded on themselves in the yz projection. As a
consequence of these foldings, it may happen that different curves γ i intersect with each other in
this projection. Therefore, we have that there ∃(y, z) ∈ γi1 ∩ γi2 . That is to say that some points
(y, z) are the result of integrating (φi1, ψj1) and also (φi2, ψj2), with ψj1 6= ψj2 and φi1 ≈ φi2 . This
is the case, for instance, of the points in region B of figure 5.18 or the points in the red zone
of the picture on the right of figure 5.21. Consequently, we can say that given a point (y, z) in
these regions, and for each couple of phases of the EM side such that F2(φ

′, ψ′) = (y, z), there
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exist two different couples (φ, ψ) from the SE side such that F1(φ, ψ) = (y, z). This means that
there exist two different connecting trajectories starting at (φ′, ψ′). So, when storing the set
B = {(φ′, ψ′) ∈ [0, 2π] × [0, 2π] | F2(φ

′, ψ′) ∈ B}, we will label it with a number 2, meaning that
there are two different ways of reaching the stable manifold of the SE Lissajous starting at the
point represented by the couple of phases (φ′, ψ′) on the EM Lissajous unstable manifold.

For some other points, such as the ones in region C of figure 5.18 or the blue region in the
picture on the right of figure 5.21, not only do the green curves fold on itself, but also another
type of overlapping occurs. This second type of overlapping is easy to understand if we keep
in mind that we are integrating the manifold associated with a torus. Naturally, a projection in
positions of a torus-like object presents overlappings corresponding to the front and the back sides
of the original torus (see figure 5.21). Therefore, each point in these regions is associated with
4 different pairs (φ, ψ) from the SE side: two of the front part (as a consequence of the foldings
in frontal γi’s) and two of the back part (respectively, due to the foldings of γ i’s from the back
part).
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Figure 5.19: Four different connecting trajectories between a Sun-Earth+Moon Lissajous around L2 and
an Earth-Moon one (in SE coordinates), which have a common crossing point on the Poincaré section (in
position coordinates). As their velocity vectors are not the same on the section, the ∆v that is needed to
adjust the velocities of the trajectories coming from the SE side with the one coming from the EM side is
computed for each case. In the xy projection (top right) we observe how two of the connecting trajectories
have similar in-plane starting phases at the SE side, while the other two also have similar in-plane phase. In
the xz projection (bottom right) we observe, however, that the out of plane arriving phases are different in
all the connecting trajectories.

For instance, in figure 5.19, four different connecting trajectories which go through the same
point on the section are represented. Two of them have the in-plane phase of the SE close to 0.75
rad, φi1 , while the other ones have it close to φi2=1.49 rad. So, two of them are due to the folding
of γi1 with φi1 ≈ 0.75 (in the front part of the torus, remarked in violet in figure 5.21), while the
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Figure 5.20: Two different connecting trajectories between a Sun-Earth+Moon Lissajous around L2 and
an Earth-Moon one (in SE coordinates), which have a common crossing point on the Poincaré section (in
position coordinates). Top right picture shows that the in-plane arriving phase at the SE Lissajous is similar,
while in the bottom right picture the fact that the out of plane phase is different can be observed.

other two come from the folding of γi2 , with φi2 ≈ 1.49, which in the yz projection lays close to
γi1 but comes from the back part of the torus (in black in figure 5.21). We can observe in that
these four connecting trajectories are quite different and are associated with a different ∆v on
the coupling point. Obviously, as they all act as connecting trajectories between the same pair of
Lissajous orbits, we are usually interested in the cheapest one. In addition, it is also interesting
to note that in the xy projection of the transfer trajectories, also in figure 5.19, one can clearly
see that two of them have similar in-plane arriving phase to the SE Lissajous and the same for the
other two. On the contrary, in figure 5.20 we observe how two different connecting trajectories
with a common crossing point on the section look like. In this case, the fact that two connections
exist through this point is due to a simple folding in the curves γi, so both connections have
similar in-plane arriving phases and different out-of-plane ones. We will then label the phases
from the EM side leading to a point in the section belonging to a region like C (figure 5.18) with
number 4. In figures 5.22, 5.23 and 5.24 some examples of how the regions with different number
of associated trajectories look like in the EM phase-space are shown.

Nevertheless, this does not mean that only two different connecting trajectories cross the
section through each point in B, and 4 different connecting trajectories do so for each point in C.
The total number of connecting trajectories now depends on the overlappings in the EM manifold
projection. For the parts where the overlapping in the EM projection is simple (only curves γ i

folding on themselves), the total number of connecting trajectories will be doubled: combinations
between the pairs of phases from the SE side and the two pairs from the EM side. That is,
a total possible number of 4 or 8 connections. Besides, for the parts where the overlapping in
EM manifold projection is double (γi folding and overlappings between front and back parts of



Chapter 5 Transfer trajectories between the Sun-Earth and Earth-Moon L2 regions 139

-0.0002

-0.00015

-0.0001

-5e-05

 0

 5e-05

 1e-04

 0.00015

 0.0002

 0  0.0005  0.001  0.0015  0.002  0.0025  0.003  0.0035  0.004  0.0045  0.005

z

y

FRONT

BACK

Figure 5.21: (left) In green the yz projection of the intersection of the stable manifold of a Lissajous orbit
around L2 in the SE problem, with Ax = 214800 km and Az = 30152.9 km. In red we have the intersection of
the unstable manifold of a Lissajous orbit around L2 in the EM problem, with Ax = 2623.7 km and Az = 8000
km. The coupling angles at t = 0 are α = 95 deg. and β = 25 deg. The labels ’FRONT’ and ’BACK’
represent different zones on the Lissajous which are overlapped in the projection. (right) Detail of the picture
on the left. The blue zone represents the points whose initial phases from the EM side are joined to the SE
libration region by 4 different connecting trajectories, while the red zone represents the points whose initial
phases lead to two different connecting trajectories. In black one of the green curves from the back part is
remarked, while one of the curves from the front part is remarked in violet.

the Lissajous), we can either have 8 connecting trajectories or a maximum total number of 16
different connecting trajectories through a given point (x, y, z) ∈ S. Consequently, one has to be
careful when constructing the database which contains the information of the overlappings and
the connecting points.

5.3.7 Preliminary explorations

Note that when applying the method explained in section 5.3.6, there are several things that
have to be chosen. Different choices result in different intersections on the Poincaré section and
therefore different connecting trajectories from one libration region to the other one.

Essentially, the free variables are:

• The Poincaré section, S.

• The sense of the integration: from SE to EM or the other way round.

• The Sun-Earth-Moon configuration at t = 0, represented by the angles α and β.

• The size of the Lissajous orbits: amplitudes Ax and Az for both RTBPs.

In this part of the work, the Poincaré section has been fixed to

S = {X = (x, y, z, ẋ, ẏ, ż) ∈ R
6 | x = −1 + µSE} = {X ∈ R

6 | g(X) = 0}
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SE (km) EM (km)
Ax 80000 - 250000 1500 - 10000
Az 15000 - 550000 5000 - 35000

Table 5.4: Amplitudes of the Lissajous orbits around L2 in the SE and EM problems which have been
explored in the search for asymptotic connecting trajectories.

with g(x, y, z, ẋ, ẏ, ż) = 1 − µSE + x (in SE coordinates). The same method could be applied if
another section was chosen, with no further modification. Even if S does not correspond to a
plane with x, y or z fixed, it still enough to make two of these coordinates match on the section by
applying a Newton method on the phases (φ, ψ), and obtain the third one from the g(X) which
defines S.

As for the direction of the integration, all results presented here go from the vicinity of L2 in
the EM problem to the vicinity of L2 in the SE problem.

Concerning the configuration at t = 0, only relative positions of the Moon corresponding to
α + β ∈ [80, 120] degrees lead to intersections in positions on S at the first cut. In the way
we approximate the manifolds, no intersections were found for values of α and β outside of this
range, at least without additional cuts with the section, which lead to longer trajectories than
the ones in which we are interested in this work. Note that the range is given in terms of the sum
of two angles: one in the ecliptic (α) and the other one in the plane containing the orbit of the
Moon (β). Thus, strictly speaking, their sum has no physical meaning. However, the inclination
of one plane with respect to the other (5 degrees approximately) is so small, that the angles can
be added as if they laid in the same plane, in order to present the results in a simple way.

Finally, concerning the size of the Lissajous, table 5.4 shows the maximum and minimum sizes
which have been successfully explored in both models. If a Lissajous orbit lays between these
ranges of amplitudes, at least one connecting trajectory for one particular initial configuration
has been found with a Lissajous orbit from the other model. It is very important to note that
our study does not intend to be exhaustive in terms of Lissajous amplitudes, but to provide
a contribution on how to effectively compute connections between particular pairs of Lissajous
orbits. This is one of the reasons for using only square Lissajous orbits around the lunar L2 point.
These orbits are seen as a means to reach the lunar libration region and maintain the satellite
there for a particular time span. Therefore, other studies should be performed when necessary
including other types of orbits. Actually, we should also mention here that the amplitudes that
have been explored (see table 5.4) are essentially limited by the convergence of Lindstedt-Poincaré
expansions of the manifolds. Future work will be devoted to exploring a wider range of amplitudes,
by using other ways of describing the Lissajous orbits and the manifolds (such as normal form
expansions [49]).

5.3.8 Results.

A database, containing the overlapping points as well as the maneuvers which are necessary on the
section to make the transfer possible, has been produced using the coupled SE and EM RTBPs.
The amplitude ranges that have been studied, as well as the values of the phases α and β, which
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represent the relative configuration of both restricted models at t = 0 (i.e. the moment of the
section crossing), were stated in the previous section. Naturally, it is extremely difficult to present
this huge amount of results in a simple way. Therefore, some tables are presented in this section,
aimed at showing a sample of the type of results that must be expected when dealing with the
intersections of manifolds belonging to Lissajous orbits. The cases presented in these tables will
be used in the following sections for testing the refinement method. A much more exhaustive
collection of results can be found in the attached DVD 2. Moreover, figures 5.22, 5.23 and 5.24
show different possible kinds of overlappings that occur on the Poincaré section between the
integrated manifolds. In these figures, the points in the phase space of the EM initial conditions
which result in two different connecting trajectories with a common point on the Poincaré section
are depicted in red, while the ones resulting in four different connecting trajectories are depicted
in green. The tangency points (either resulting in 1 or 3 connecting trajectories) are not shown
in the figure, as they do not introduce valuable information (they lay in the borders between
red and green regions), but finding them implies using a very thick net with the corresponding
increase in the computational time.

In table 5.5, results are presented for connecting trajectories starting at medium sized square
Lissajous orbits around L2 of the EM problem (Az from 14000 to 23000 km) and arriving at
square Lissajous orbits around L2 of the SE problem. Intersections are rarely found under these
conditions for square Lissajous orbits in the SE side having Ax smaller than 100000 km. For this
reason, all examples in the table have big Lissajous motions in the solar region as arrival orbits.
On the other hand, we have already proved that when an overlapping takes place in the Poincaré
section between two integrated hyperbolic manifolds, infinitely many connecting trajectories can
be found joining the corresponding orbits, with different ∆v values in the coupling point (see
section 5.3.6). Furthermore, initial conditions on the orbits are discreetised in order to integrate
the manifolds. Therefore, among all possible connecting trajectories derived from the section
overlapping between the hyperbolic manifolds of the two different Lissajous orbits, the table only
displays the cheapest one obtained from the discreetised set of initial conditions. Thus, the cost
values shown in the table are close to the minimum possible cost of a connecting trajectory joining
the corresponding Lissajous orbits in the coupled RTBPs model, but they have not been obtained
by means of any optimisation procedure. They range from 200 to 400 m/s, which implies that
the maneuvers are quite big and seems to indicate that it is not easy to find low cost connecting
trajectories from solar to lunar libration regions by means of square Lissajous orbits in both sides.
Finally, the addition of the integration time on both manifolds is shown in the last column of the
table. All transfer time are around half a year.

On the other hand, results are presented for non-square Lissajous orbits around the SE L2

point in table 5.6. If the Lissajous motion in the solar side has big Ax amplitude and small Az

amplitude, the chances are that transfer trajectories to the lunar L2 region are much cheaper than
for the square SE Lissajous case: from slightly less than 100 m/s to 200 m/s in the vast majority
of cases. As for the transfer time, it may take a little longer to complete these transfers than the
ones shown in table 5.5, but the integration time in all the cases that have been explored never
surpasses the 7 months upper bound.

2The database in the attached DVD contains transfer trajectories starting at square Lissajous in the EM side
and having Lissajous orbits of the SE problem with big Ax amplitudes and small Az amplitudes as arrival orbits.
For other particular values of the amplitudes, the interested reader should contact the author.
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Figure 5.22: (left) x-axis: φ, y-axis: ψ. Couple of initial phases of the Earth-Moon L2 Lissajous orbits
unstable manifold. Red points represent couples of phases which lead to points on the Poincaré section that
are joined to the Sun-Earth Lissajous orbit by two different points (i.e. the SE manifold reaches the section
at this points with two different velocity vector). Green points are initial conditions with 4 different arriving
points on the Sun-Earth Lissajous. (right) yz projection in the Poincaré section. Red and green points are
the (y, z) coordinates associated with the corresponding phases on the left. Blue lines represent the cut with
the section of the stable manifold of the Lissajous orbit of the SE manifold. The pictures in these figure, as
well as the ones in figures 5.23 and 5.24 are intended to provide examples of different overlapping situations.
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Figure 5.23: Same comments as in figure 5.22 apply. In addition, violet dots represent the part of the
Earth-Moon Lissajous manifold which does not intersect the Sun-Earth one.
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Figure 5.24: Same comments as in figure 5.22 apply. In particular, the pictures in this figure correspond to
cases in which the Lissajous orbit from the Sun-Earth side has small z amplitude (less than 105 km).
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SE amplitudes (km) EM amplitudes (km) phases (deg) cost time
Ax Az Ax Az α β (m/s) (days)

1 100072.0 320000 6560.7 20000 50 40 419.19 166.05
2 103200.0 330000 5576.6 17000 45 50 394.49 166.84
3 106327.0 340000 7544.8 23000 80 10 377.00 167.27
4 112581.4 360000 6560.7 20000 50 50 347.84 170.33
5 115708.7 370000 6560.7 20000 35 60 303.18 169.51
6 121963.2 390000 5904.6 18000 65 30 295.20 169.48
7 125090.3 400000 6232.6 19000 55 45 284.60 170.71
8 134472.2 430000 4592.5 14000 30 75 287.24 171.96
9 137600.0 440000 5576.0 17000 65 40 268.67 174.98
10 137600.0 440000 7216.7 22000 80 20 249.16 169.51

Table 5.5: Sample cases of square Lissajous orbits around the L2 point of the Sun-Earth and the Earth-
Moon problems whose manifolds have an overlapping region in yz coordinates on the Poincaré section with
x = −1 + µSE. The table shows the amplitudes of the Lissajous, the relative configuration phases at t = 0,
as well as the costs of the necessary maneuvers in the point where the RTBPs are coupled and the total
integration times (from the point where the trajectory leaves the EM Lissajous vicinity until it reaches the
SE Lissajous). When two manifols associated with Lissajous orbits intersect in the aforementioned Poincaré
section, an infinite number of connecting trajectories with the corresponding ∆v can be found. The table
only shows the cost of the connecting trajectory which is fairly close to the optimal one (the cheapest of
all trajectories obtained by taking a discreet set of 100 × 100 phases in the initial conditions defining the
unstable manifold of the EM Lissajous).

SE amplitudes (km) EM amplitudes (km) phases (deg) cost time
Ax Az Ax Az α β (m/s) (days)

11 244088.3 75382.4 5248.5 16000 15 105 163.08 183.92
12 244088.3 75382.4 4592.5 14000 20 100 167.55 204.89
13 244088.3 75382.4 6560.7 20000 0 120 155.71 201.98
14 212964.4 75382.4 5248.5 16000 10 100 209.59 179.18
15 212964.4 75382.4 2952.3 9000 60 45 243.53 169.33
16 194619.3 90458.9 4920.5 15000 25 95 102.99 177.71
17 177341.7 60305.9 4920.5 15000 35 70 173.87 172.57
18 175638.0 90458.9 6560.7 20000 30 85 72.23 173.94
19 177341.7 60305.9 6888.7 21000 75 35 52.74 169.98
20 157075.8 45229.4 6888.7 21000 5 100 87.69 169.02

Table 5.6: Same comments as for table 5.5, but in this case the Lissajous in the SE side are not square
Lissajous orbits. They have big Ax and small Az amplitudes. It is clear from these tables that in terms of
cost in the coupled RTBPs, it is much better to use big and flattened Lissajous orbits in the SE side than
square ones.
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Therefore, some conclusions can be drawn from the results contained in the present section.
Firstly, that big in-plane amplitudes together with small out-of-plane amplitudes for the SE
Lissajous seem to be the most adequate for this type of transfer trajectories using the coupled SE
and EM RTBPs model. Secondly, that we must expect a transfer time of rawly half a year. And,
finally, that the ∆v maneuvers in the Poincaré section or the coupling point are big, ranging from
slightly less than 100 m/s in the best cases to even 400 m/s when big square Lissajous in the SE
side are used.

5.4 Refinement to JPL coordinates

A complete methodology for the search of connecting trajectories between Lissajous orbits of the
SE and the EM systems has been developed in the previous sections. However, these trajectories
do not correspond to a realistic model, but to the coupling of two restricted three body problems.
Consequently, further refinements are necessary in order to use them as real paths from the
libration regions of one of the systems to the libration region of the other one. Using a simple
model to obtain the first approximation to the motion and then refining it to a more realistic path
is a common technique in trajectory design ([44]). In this section, a procedure aimed at getting
solutions close to the ones previously obtained for the coupled RTBPs, but of more realistic
equations of motion by using JPL ephemeris is presented ([76]). It is important to note that the
results that will be obtained in the present section have to be regarded as good initial seeds for
a further optimisation procedure more than final realistic solutions, as they contain big ∆v’s in
the coupling point, which are inherited from the already commented maneuvers in the coupled
RTBPs.

Unfortunately, for these more realistic models of motion of the bodies of the Solar System, a
complete study of the phase space around the libration points (or their dynamical substitutes)
like the one that already exists for the RTBP has not yet been carried out, as it is much more
complicated to perform. Furthermore, one of the fundamental differences between the RTBP and
an ephemeris model is that the equations of motion are no longer autonomous. That is, an initial
epoch has to be fixed, which determines the behaviour of the solution. Remember that for the
coupled RTBPs we made the time on the section be t = 0. This is a delicate point in the method,
as it is the place where the problems are coupled. The crossing of the section is also the point that
we use for setting an initial epoch when refining a particular trajectory to JPL coordinates. Given
a connecting trajectory in the coupled RTBP’s, as well as the initial configuration associated with
it (angles α and β at t = 0), the choice of the JPL date that corresponds to the moment of the
coupling, t = 0, can be made in the following way:

1. Choose an initial future date (day, month, year).

2. Find a date, as close as possible to the chosen one, such that the configuration of the Sun,
Earth and Moon bodies in JPL ephemeris corresponds to the angles α and β of the original
trajectory.

3. Use this date as initial epoch t0, corresponding to t = 0 in the coupled RTBPs. That is to
say that the chosen date corresponds to the section crossing time.
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Now the points on the manifold approaching the SE Lissajous will be associated with times t > t0,
while the points on the unstable manifold of the EM Lissajous with times t < t0.

It may happen that another time reference or requirement exists for a particular mission. For
instance, if the date at which the spacecraft should arrive to a Lissajous around the SE L2 is
known instead of the time for the section crossing. We can adapt our refinement to this kind of
restriction by using the approximation of the flight time provided by the RTBP. For example, let
the required arrival date at the SE Lissajous be equal to tL (in dynamic Julian days). Compute
the flight time from section S to the Lissajous around L2 in the SE RTBP for the connecting
trajectory that is being refined to JPL coordinates, tfl (in days). Then we can approximate the
Julian date for the section crossing, tS , by tS = tL − tfl and use this date as the future date
mentioned in step 1.

5.4.1 Multiple shooting method

The method that we use for transforming the connecting trajectories to JPL coordinates is a
multiple shooting procedure, similar to the one used for the numerical solution of boundary-value
problems ([79]).

As in the standard multiple shooting method, the total time span is splitted into a number of
shorter subintervals, t0, t1, t2, ..., tN , with t0 the initial epoch and tN − t0 the length of the time
interval. Let us denote by

Qi = (ti, xi, yi, zi, ẋi, ẏi, żi, )
T , i = 0, 1, ..., N

the points on the RTBP connecting trajectory, and by ∆ti = ti+1 − ti, i=0,...,N-1. Let Φ(t, Qi)
be the image of the point Qi under the flow associated with the realistic equations of motion in
the solar system after an amount of time t.

If all the points Qi were on the same orbit of the new JPL equations, then Φ(∆ti, Qi) = Qi+1

for i = 0, ..., N − 1. As this is not the case, a change in the Qi is needed in order to fulfil the
matching conditions. Consequently, one must solve a set of N nonlinear equations, which can be
written as
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A Newton’s method is used to solve the system above. If Q(j) =
(

Q
(j)
0 , Q

(j)
2 , ..., Q

(j)
N

)T

, denotes

the j-th iterate of the procedure, Newton’s equations can be written as

DF (Q(j)) · (Q(j+1) −Q(j)) = −F (Q(j)),

where the differential of the function F has the following structure

DF =











A0 −I
A2 −I

. . .
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AN−1 −I











,
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with DΦ = diag(A0, A2, ..., AN−1). As each of the transition matrices, Ai, that appear in DΦ
are 6 × 6, at each step of the method we have to solve a system of (N − 1) × 6 equations with
6 ×N unknowns, so some additional conditions must be added. This is the only difference with
the standard multiple shooting method and is due to the fact that our problem is not a real
boundary-value one. As additional equations, initial or final conditions at times t = t0 or t = tN
can be fixed. From the numerical point of view, one has to be careful with the choice because the
problem can be ill conditioned from a numerical point of view. This is because the matrix DF (Q)
can have a very large condition number. To avoid this bad conditioning, we can choose smaller
values for ∆ti, but in this case the number of points Qi increases and the instability is transferred
to the procedure for solving the linear system. In addition, another important disadvantage of
the extra boundary conditions is that they can force the solution in a non natural way giving
either convergence problems for long time spans, or solutions in JPL coordinates which are far
from the original RTBP ones.

To avoid this, we can apply Newton’s method directly. As the system has more unknowns
than equations, we have (in general) an hyper-plane of solutions. From this set of solutions we
try to select the one closer to the initial connecting trajectory used to start the procedure. This is
done by requiring the correction to be minimum with respect to the Euclidean norm, for instance.
Denoting by ∆Q(j)

∆Q(j) = Q(j+1) −Q(j),

and requiring ‖∆Q(j)‖2 to be minimum, one gets the Lagrange function L(∆Q,Λ) with (vector)
multiplier Λ,

L(∆Q,Λ) = ∆QT · ∆Q+ ΛT · (F (Q) +DF (Q) · ∆Q),

we get

∆Q(j) = −DF (Q(j))T ·
[

DF (Q(j)) ·DF (Q(j))T
]−1 · F (Q(j)), (5.9)

which gives the value of ∆Q(j) explicitly.

5.4.2 First approximation to real ephemeris connecting trajectories

To start with, one can think of trying to refine the whole connecting trajectories using a multiple
shooting method, after properly setting the initial epoch. However, this will rarely provide sat-
isfying results, as the parallel shooting cannot generally couple the two different RTPBs with no
additional help. That is to say that the connecting trajectory obtained from coupling two RTBPs
may be too far from a real JPL ephemeris trajectory at some points for the parallel shooting to
smooth it at the first try.

On the contrary, each one of the legs (SE and EM) can be easily refined from RTBP to
JPL coordinates, if these transformations are done separately. The problem is, naturally, that
the point corresponding to the initial epoch, which in RTBP coordinates was coincident on the
section for both sides, is no longer the same. Consequently, some kind of forcing in the conditions
corresponding to the point on the section, in order to obtain connecting trajectories which are
continuous in position in JPL coordinates, cannot be avoided. We have used a forcing that
consists of refining the EM leg with no restrictions, and then using the final (x, y, z) coordinates
that have been obtained as the position coordinates of the first point of the SE leg. In other
words, we force the initial point of the SE leg to be the final one of the EM leg, which we have
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obtained by freely refining the part of the connecting trajectory coming from the lunar region.
We can call this method the section-forced refinement to JPL coordinates.
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Figure 5.25: (left) 3D representation of the connecting trajectory labelled as 1 in table 5.5. In red, the
trajectory as it was obtained in the coupled RTBPs. In green, the result of applying the section forced
refinement to the RTBP one and setting the date for the section crossing to August the 24th 2015. (right) xy
and yz projections of both the RTBP and the JPL refined trajectory. These projections show that the section
forced refinement provides a JPL position continuous trajectory which is very similar to the one obtained in
the coupled RTBP model.

The section-forced refinement to JPL coordinates can be applied to any of the connecting
trajectories that we obtain by coupling the two RTBPs. As a result, we get trajectories in JPL
coordinates, which are continuous in position but need a ∆v in the coupling point. Some trajec-
tories that were obtained using this method are shown in figures 5.25 and 5.26, and correspond to
connecting trajectories contained in table 5.5 and 5.6 (as detailed in the caption of the figures).

Actually, we can apply this refinement method to the whole set of connections that we learnt
how to find in section 5.3.6 between two particular Lissajous orbits. We ought to bear in mind,
however, that the refinement depends on the date that is chosen for coupling point (i.e. the
section crossing). Therefore, different results are obtained both in terms of the maneuver point
(i.e. the forced point on the section) as well as the costs for different section crossing epochs
(see table 5.7). For instance, if the real relative configuration between the Sun, the Earth and
the Moon at the chosen epoch is very different from the one required by the RTBP connecting
trajectory, the parallel shooting method will obviously modify this original RTBP trajectory in
order to obtain a position continuous one in JPL coordinates. This means that some of the
obtained JPL connecting trajectories may be different from the original RTBP ones in terms of
the departure and arrival phase on the Lissajous orbits, but always maintain the values of the
amplitudes of the Lissajous in both sides. Some examples of how the cost and the coupling point
change are depicted in figure 5.27.
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RTBP cost JPL cost (m/s)
(m/s) 28-Dec-2009 19-Apr-2013 24-Aug-2015 15-Nov-2018

1 419.19 516.55 489.58 523.34 523.38
2 394.49 491.29 464.80 496.22 502.17
3 377.00 484.13 456.73 491.20 488.16
4 347.84 430.68 410.05 432.47 453.49
5 303.18 362.52 348.21 362.80 400.04
6 295.20 376.61 368.18 374.95 420.76
7 284.60 351.09 344.45 348.88 397.91
8 287.24 323.10 324.91 316.74 381.60
9 268.67 332.53 335.35 327.02 389.66
10 249.16 315.88 320.75 310.41 374.53
11 163.08 214.65 186.09 227.30 199.64
12 167.55 219.24 188.94 232.40 202.53
13 155.71 173.06 143.12 187.83 157.39
14 209.59 255.45 220.99 271.59 226.60
15 243.53 170.58 233.48 155.16 265.90
16 102.99 128.47 116.09 137.01 154.73
17 173.87 187.99 167.38 199.09 192.33
18 72.23 87.46 93.27 95.88 141.10
19 52.74 79.43 124.64 80.92 166.49
20 87.69 128.81 103.13 144.96 134.73

Table 5.7: Maneuvers at the coupling point which are necessary when the coupled RTBP connecting tra-
jectories of table 5.5 and 5.6 have been refined to JPL ephemeris using the section forced refinement, for
several epochs of section crossing. Note that we cannot assure that the chosen section crossing epoch is
exactly the moment when the coupling takes place. The refinement method uses the closest epoch to the
chosen one for which the real relative configuration of the Sun, Earth and Moon positions corresponds to the
initial configuration phases (α and β) of the coupled RTBPs. Thus, the maximum difference between the
chosen epoch shown in the table and the real maneuvering point is of two weeks in the worst case.
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Figure 5.26: Same comments as for figure 5.25. In this case the connecting trajectory which is represented
is labelled as 13 in table 5.6.

Moreover, the cost of the maneuver in JPL coordinates is of the same order of magnitude as the
original one in the coupled RTBPs, as observed in table 5.7. However, the cost of JPL maneuvers
is usually higher than the cost of the original ones in RTBPs, being this fact a natural consequence
of the higher complexity of the JPL model. Despite this general increase in the cost, sometimes
the JPL trajectory has a lower cost than the original one in RTBPs (see for instance some of the
values for trajectories 15 and 17). These examples support the claim that the increase in the costs
after the refinement procedure is not an intrinsic characteristic of the section forced refinement
method that we use, but of the JPL ephemeris themselves. Furthermore, the dates displayed in
the aforementioned table have been randomly chosen in order to prove that the section forced
refinement provides JPL position continuous trajectories, no matter which refinement date we
pick. Therefore, if no strict requirement exists for the time of section crossing, a study can be
performed in order to determine the most convenient intersecting date on the section for a given
pair of Lissajous orbits (both the position at the moment of the maneuver and the magnitude of
this maneuver should be taken into account when deciding which is the most convenient time).

It must be remarked that the connecting trajectories in JPL coordinates which are obtained
from the coupled RTBPs ones by using the section forced refinement have to be regarded just as
a good initial seed for obtaining cheaper realistic trajectories and not as final usable trajectories
themselves. For instance, trajectory optimisation procedures could be applied to them and low
cost transfers are bound to be obtained. No optimiser has been used in the present doctoral work
and this issue is left as part of the future work. On the contrary, a search for free connecting tra-
jectories in JPL coordinates has been successfully performed by modifying the multiple shooting
algorithm, as shown in the following sections.
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Figure 5.27: These pictures are aimed at showing the effect of different section crossing epochs used in the section
forced refinement to JPL (corresponding to the connecting trajectory labelled with number 11 in table 5.6). In the first
row on the left, the yz projection of the overlapping region between the manifolds in RTBP coordinates is shown. The
picture in this row on the right, as well as the ones in the second row correspond to planar projections (yz, y∆v and
z∆v respectively, coordinates in SE RTBP units and ∆v in m/s) of the points of the aforementioned overlapping region
when the section forced refinement has been applied to them. Finally, in the last two rows, the xy (left) and xz (right)
projections of the JPL connecting trajectories corresponding to different crossing dates (as shown in table 5.7, line 11)
are represented. [ Colour code: Light blue: RTBP coordinates. Green: JPL with section crossing on December,
28th 2009. Violet: JPL with section crossing on April, 19th 2013. Red: JPL with section crossing on August, 8th 2015.
Blue: JPL with section crossing on November, 15th 2018. ]
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5.4.3 Zero cost connecting trajectories in JPL coordinates

It has been shown in section 5.4.2 that it is not difficult to obtain JPL ephemeris trajectories
starting from the ones obtained in the RTBPs, as long as the SE and the EM parts are treated
separately (i.e. two different runs of the multiple shooting procedure: from the EM Lissajous orbit
to the Poincaré section and, on the other hand, from the Poincaré section to the SE Lissajous
orbit).

Let {Ql
0, . . . , Q

l
N} be the points in JPL coordinates which are the result of applying the

parallel shooting method to the EM part of the trajectory. The subindices are ordered according
to the direction of the integration, as the parallel shooting works in forward time. That is, Ql

0

corresponds to the initial point on the unstable manifold of the EM Lissajous and Ql
N corresponds

to the point on the section. Respectively, {Qs
0, . . . , Q

s
M} are the points obtained by using the

parallel shooting method on the SE part of the trajectory: Qs
0 is the point on the section, while

Qs
M on the stable manifold. With this notation and assuming that the section forced refinement

explained in the previous sections has been used, Ql
N and Qs

0 have the same position coordinates.
Therefore, we have that Ql

N −Qs
0 = ∆v, with

∆v = (x, y, z, ẋ, ẏ, ż)lN − (x, y, z, ẋ, ẏ, ż)s0 = (0, 0, 0,∆ẋ,∆ẏ,∆ż). (5.10)

The magnitude of these changes of velocity ∆ẋ, ∆ẏ and ∆ż, that are needed for the connecting
trajectory to be used as a transfer are sometimes of hundreds of meters per second. For this
reason, there is little chance that the introduction of the complete trajectory in a parallel shooting
algorithm leads to a zero cost connection. However, a slight modification of the multiple shooting
method can be used in order to iteratively reduce the maneuvers, ∆v, and obtain zero cost
connecting trajectories in real ephemeris when possible.

It is convenient to use the following notation in order to introduce the trajectory in a multiple
shooting algorithm aimed at reducing the section ∆v,

Qi = Ql
i, i = 0, .., N − 1 and Qi = Qs

i−N , i = N, .., N +M.

Note that this implies that the point corresponding to the SE part, Qs
0, is used on the section

instead of the last point of the EM leg, Ql
N . Moreover, if φ represents the flow of the equations of

motion in JPL ephemeris, the following equality is satisfied after the section forced refinement:
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which essentially implies that points Qi belong to a natural trajectory in JPL coordinates, but
a maneuver ∆v is needed in order to jump from QN−1 to QN (i.e. from the EM part to the SE
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part). We can use the following simplification of the notation,
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Now, the modification of the parallel shooting consists of introducing the maneuver vector
∆v in the equations which we want to make zero, and iteratively reducing it. Therefore, at each
step we use the parallel shooting method in order to find the new trajectory {Qj

0, ...Q
j
N+M} which

satisfies,
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(5.11)

where ∆j represents the maneuver vector at iteration j, which is reduced as j increases. For
instance, we can choose n ∈ N and let ∆j = ∆j−1(1− ‖∆v‖‖∆j−1‖−1/n). With this definition of
∆j, equations (5.11) are trivially satisfied for j = 0, as the trajectory is continuous in position
under the flow of the JPL equations at each of the nodes and ∆0 corresponds to the transfer
maneuver after the section forced refinement 3. At each iteration ‖∆j‖ < ‖∆j−1‖, until a final
trajectory is obtained with ‖∆m‖ < δ, with δ the required tolerance (we usually use 10−6). Note
that by choosing n we are choosing the maximum number of iterations that would be necessary
to obtain ‖∆j‖ = 0. Therefore, if n is too small, maybe we are trying to smooth the maneuver
too fast and the parallel shooting method may not converge. On the other hand, if n is too big,
the computational time is significantly increased, due to the amount of multiple shooting systems
that have to be solved.

5.4.4 Results

When applying the method to reduce the maneuver at the coupling point, results can be classified
in three groups:

1. Some trajectories are easily refined to ∆v = 0 and the arrival Lissajous orbits around the
SE L2 point do not change in a significant way (see figures 5.28 and 5.29). These are the
most interesting cases for mission prototyping, as one can design the trajectory in the well
known equations of the RTBP and then transform it to a realistic transfer trajectory by
using the JPL ephemeris.

3Other definitions for ∆j are also possible, as long as they satisfy ‖∆j‖ < ‖∆j−1‖ ∀j ≥ 1 and they maintain
the computational time within reasonable bounds.
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Figure 5.28: Trajectory joining a Lissajous around L2 in the EM system and a Lissajous around the L2 point
of the SE system. (see details in table 5.6, where this connection is labelled as 15). In the first row on the
left a 3D representations of the starting JPL coordinates trajectory is shown (i.e. the result of applying the
section forced refinement to coupled RTBPs original seed), with a cost of 155.16 m/s. On the same row
but on the right side the refined JPL connecting trajectory with zero cost is depicted. In both cases, the
section crossing takes place on August the 24th 2018. On the second row, the xy and xz projections of the
connecting trajectories are shown. It can be observed that for these particular amplitudes and section crossing
date, the effects of the maneuver smoothing do not affect the characteristics of the connecting trajectory in
a significant way.
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Figure 5.29: Trajectory joining a Lissajous around L2 in the EM system and a Lissajous around the L2 point
of the SE system. (see details in table 5.6, where this connection is labelled as 19). In the first row on the
left a 3D representations of the starting JPL coordinates trajectory is shown (i.e. the result of applying the
section forced refinement to coupled RTBPs original seed), with a cost of 80.92 m/s. On the same row but
on the right side the refined JPL connecting trajectory with zero cost is depicted. In both cases, the section
crossing takes place on August the 24th 2018.
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Figure 5.30: Trajectory joining a Lissajous around L2 in the EM system and a Lissajous around the L2 point
of the SE system. (see details in table 5.6, where this connection is labelled as 14). In the first row on the
left a 3D representations of the starting JPL coordinates trajectory is shown (i.e. the result of applying the
section forced refinement to coupled RTBPs original seed), with a cost of 271.6 m/s. On the same row but
on the right side the refined JPL connecting trajectory to zero cost is depicted. In both cases, the section
crossing takes place on August the 24th 2018. The effects of the maneuver reduction can be observed in
the projections shown in the second row. The in-plane amplitude has been slightly enlarged (picture on the
left containing the xy projection), while the out of plane amplitude has been reduced a little (picture on the
right, xz projection). These are the effects which can be expected when applying the procedure for reducing
the maneuver on the section.
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Trajectories associated with big and flattened Lissajous orbits in the solar regions are prone
to exhibiting this good behaviour in the refinement process. In fact, Lissajous like the ones
we have just described are close to planar Lyapunov orbits, for which zero cost connecting
trajectories have already been found (in the coupled RTBPs models). Furthermore, even z
oscillations that may seem big in the EM system are seen as close to planar motions when
looked in the SE reference frame. Therefore, no big z oscillation can be expected in the SE
Lissajous coming from a natural trajectory which is born as a small z oscillating motion in
the EM side. Despite this a priori considerations on the shape of the SE Lissajous, studies
should be performed in each particular case, as other kinds of Lissajous orbits can also lead
to zero cost JPL trajectories with no significant modifications.

2. In other cases, the refinement of the transfer trajectory to a zero cost JPL trajectory results
in important changes in the original orbits (see figures 5.30 and 5.31). When this happens
one can choose whether to use the new orbits as nominal trajectories or to apply amplitude
correcting maneuvers once in the arrival orbit, in order to transfer to the desired Lissajous.

Another option in these cases would be to stop the procedure before the zero cost transfer
is obtained. It is then a matter of finding the balance between cost and deviation from the
original orbits (see figure 5.32).

3. Some other trajectories cannot be refined to zero cost transfers, as all attempts to reduce
the coupling maneuver to zero fail due to a divergence in the maneuver reduction algorithm.
This is the case for instance of many of the trajectories having as arrival orbit a square SE
Lissajous around L2 or the non-square arrival SE Lissajous with Az amplitudes bigger than
150000 km (see figure 5.31). In the vast majority of cases, however, the coupling maneuver
can be reduced to less than 100 m/s.

If it is not possible or operationally convenient for the transfer to perform such big ma-
neuvers, the designer should consider other means to reach the desired Lissajous around
the solar L2. For instance, using a Lissajous orbit which can be reached by a zero (or low
enough) cost connecting trajectory and performing amplitude change maneuvers afterwards.

The three different possibilities commented above correspond to the convergence and diver-
gence behaviour that one must expect when dealing with these kinds of refinements, for several
reasons. Firstly, the initial seeds were found in a model which does not correspond to the phys-
ical reality. In addition, these initial seeds which have been introduced into the section-forced
refinement and further manevuer reduction are not even required to have a small ∆v in the orig-
inal coupled RTBPs model (sometimes this ∆v reaches 400 m/s). Furthermore, trajectories have
to be associated with a refining epoch in the JPL ephemeris, while the coupled RTBPs model
is autonomous. Taking all this into account, different degrees of convergence of the refinement
procedure have to be expected:

• When the trajectory in the coupled RTBPs model is close to a natural transfer and the
chosen epoch for the refinement is apropriate, zero cost trajectories are obtained in real
ephemeris which are similar to the initial seed (case number 1, which we can call convergence
case of the refinement procedure).
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Figure 5.31: 3D representation of the real ephemeris transfer corresponding to the amplitudes and initial
configuration labelled as 7 in table 5.5. Same comments as for figures 5.30 and 5.28 apply, in terms of
the meaning of each of the figures as well as epoch of section crossing, but in this case the modification
of the in-plane and out of plane amplitudes in order to achieve a zero cost transfer is significant. If one is
interested in maintaining the original characteristics of the connecting trajectory, the refinement procedure
can be stopped before the 0 cost is reached, as shown in figure 5.32.
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Figure 5.32: Same example trajectory as in figure 5.31. In these pictures some steps of the refinement to
zero cost are shown. The column on the left shows the 3D representation of the refined JPL trajectory for
a ∆v of 247 m/s (first row), 141 m/s (second row) and 98 m/s (third row). Besides, the column on the
right contains the xy and yz projections of the SE Lissajous orbit for the aforementioned refined trajectories
compared to the original JPL one (always in green, obtained in the first refinement of the RTBPs using
the section forced refinement for the date of section crossing August the 24th 2015), which costed around
350 m/s. One can choose to stop reducing the maneuver whenever the adequate deal between cost and
resemblance to the initial trajectory has been met.
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Figure 5.33: Trajectory joining a Lissajous around L2 in the EM system and a Lissajous around the L2 point
of the SE system. (see details in table 5.5, where this connection is labelled as 5). In this case, the refinement
to JPL coordinates had to be stopped before the zero cost transfer trajectory had been obtained. In the first
row on the left a 3D representations of the starting JPL coordinates trajectory is shown (i.e. the result of
applying the section forced refinement to coupled RTBPs original seed), with a cost of 489.6 m/s. On the
same row but on the right side the refined JPL trajectory to 30.8 m/s cost is depicted. In both cases, the
section crossing takes place on April the 19th 2013. The out of plane amplitude of the arriving Lissajous
orbit on the SE side is too big for a cheap connecting trajectory to exist to the lunar libration region. In the
refinement procedure, the out of plane amplitude is reduced and the in plane amplitude enlarged as shown in
the xy and xz projections in the second row. In spite of these modifications to the arriving Lissajous side, a
zero cost transfer trajectory could not be obtained joining the solar and lunar libration regions in this case.
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• On the contrary, when no real ephemeris connecting trajectories exist for the given values
of the Lissajous amplitudes the refinement procedure is obviously unable to find them. This
corresponds to the above cases 2 and 3.

For case number 2, even if no real connecting trajectory exists for the given amplitudes of
the coupled RTBP trajectory, this initial trajectory is close enough to a natural transfer
between Lissajous orbits of different amplitudes for the iterative refinement procedure to
converge to it. This fact proves that our method is a good search method, despite the fact
that it may not be interesting for mission prototyping in this case.

Finally, when the original trajectory in the coupled RTBPs lies in a region which is too far
from any zero cost connecting trajectory in real ephemeris, the refinement methods performs
in the best possible way, which is reducing the maneuver until a point is reached when any
further modification in the vicinity of the trajectory would increase its cost. That is to say,
when a positive minimum of the ∆v is found (case number 3).

Therefore, the divergences of the refinement should be regarded as a lack of real zero cost con-
nections, rather than as weak points of our methodology.

All comments on the Lissajous amplitudes with respect to the behaviour of the refinement
procedure mainly refer, so far, to the SE Lissajous orbit. As for the EM side, the Lissajous orbits
undergo in all cases a significant increase in size when compared to the original ones in RTBP (see
figure 5.34). Lindstedt-Poincaré expansions used to describe the Lissajous and their hyperbolic
manifolds are valid for a range of amplitudes which may be too small for transferring purposes.

Figure 5.34: Final refined trajectory around the lunar L2 libration point (in red), corresponding to original
amplitude values Ax=2952.3 km and Az=9000 km in the EM RTBP (square Lissajous, depicted in green).
The pictures show, from left to right, the xy, xz and yz projections of the ephemeris trajectory in the lunar
libration region in lunar adapted coordinates (EM RTBP system adapted coordinates centred in L2.). The
complete connecting trajectory corresponds to the initial angles α = 60 deg. and β = 45 deg. and the arrival
orbit is a Lissajous orbit around the solar L2 libration point with Ax=212964.4 km and Az=75384.4 km (this
transfer is labelled as number 15 in table 5.6 and the section is crossed on August the 24th 2015. Figure 5.28
shows the 3D representation of this trajectory in the SE system adapted coordinates.). The y amplitude
changes from 9000 km to almost 30000 km, and the x amplitude from around 3000 km to 10000 km. This
changes are significant when depicted in Earth Moon coordinates, but they are not that important if one
takes into account that we are dealing with amplitudes of hundreds of thousands of km in the Sun-Earth side.
Consequently, the most important thing is to obtain an orbit in the EM libration region which is naturally
maintained around the L2 point and follows a Lissajous-like pattern.
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Nevertheless, this increase is not seen as a big problem for the present work, as we were in-
terested in proving that a way of finding transfer trajectories from the lunar libration regions to
solar libration orbits, based on the coupled RTBPs, exists and that it is also usable for trans-
forming the approximated coupled solutions to real ephemeris ones. Therefore, any orbit which
is naturally maintained in the L2 libration region for more than 2 years (as the ones we obtain
in JPL coordinates) is considered an acceptable starting orbit, even if it is quite big. Note also
that differences in size which may seem big in EM coordinates (of the order of thousands of km)
are relatively small in the frame of the general problem, involving solar libration motions with
amplitudes of a few hundreds of thousands of km. If other types of orbits around the Moon were
desired, a particular study focused on lunar libration regions should be carried on.

Furthermore, it can be observed in all refined JPL trajectories with either zero or low cost
maneuvers that the relative configuration of the Earth and the Moon at the moment when the
trajectory leaves the vicinity of the EM Lissajous orbit is always similar, and close to the full
moon configuration (Moon aligned with the Sun-Earth axis). Actually, the angle between the
Sun-Earth axis and the Earth-Moon vector at the moment when the transfer trajectory leaves the
vicinity of the Earth-Moon Lissajous can be computed and it ranges between 5 and 20 degrees.
That is to say that we have to look for transfer windows from lunar to solar libration regions
from 0.5 to 1.6 days after a full moon, in early waning lunar phase (see figure 5.35).
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Figure 5.35: Representation of the Earth-Moon vector with respect to the Sun-Earth axis at the moment
when the trajectory leaves the vicinity of the Earth Moon Lissajous (point on the trajectory represented by
a cross). (left) xy representation of the zero cost JPL ephemeris connecting trajectory corresponding to 19
in table 5.6. The angle between the Earth-Moon vector and the Sun-Earth axis is approximately 5 degrees in
this case. (right) xy representation of the zero cost JPL ephemeris connecting trajectory corresponding to 8
in table 5.5. This case corresponds to a big angle between the Earth-Moon vector and the Sun-Earth axis of
around 19 degrees. Both trajectories have a section crossing date close to August the 24th, 2015.

Furthermore, we would also like to comment the fact that a trajectory between two given
Lissajous orbits exhibits one of the three aforementioned behaviours in the refinement procedure
is always dependent on the dates that are chosen for the refinement. It is true that when a
trajectory turns out to be refinable to zero cost for a particular chosen epoch, it usually is whenever
the starting date (see figure 5.36 and 5.37). However, different dates can lead, for instance, to
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greater deviations from the original orbits or even to cases for which zero cost trajectories cannot
be reached.
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Figure 5.36: See comments in figure 5.37.

We have developed a method to refine coupled RTBP trajectories to real ephemeris coordi-
nates. For initial trajectories in these coupled RTBPs which are close to the natural dynamics of
the real system, zero cost transfers are easily obtained and they are as well kept similar to the
original seeds in the coupled models.

When the initial seed in the restricted problems represents a trajectory which is far from a
natural transfer, it will be changed in the process of ∆v reduction and sometimes, completely
free connecting trajectories cannot be obtained (as they may not exist in the real model). In
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Figure 5.37: Three different ways of refining the connecting trajectory labelled as 12 in table 5.6 to a zero
cost JPL trajectory, depending on the date of the section crossing. In figure 5.36 the chosen date is April
the 19th 2013. In the first row of the present figure (in purple) the section crossing takes place on November
the 15th 2018. Finally, the last representation (in light blue) corresponds to the section crossing on August
the 24th 2015. All connecting trajectories are compared in the right column to the original JPL trajectory
that was obtained by applying the section forced refinement to the RTBP transfers at the different section
crossing epochs, by means of the xy projection (top) and xz projection (bottom). The original JPL trajectory
is always depicted in green.
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the worst case, however, our method allows for a reduction of the coupling maneuver to values
around 100 m/s, when no shape and size requirements are imposed.

In terms of the characteristics of the solar Lissajous orbits, natural transfers which resemble
the ones that can be computed in the coupled RTBPs can be expected for Lissajous orbits with big
in-plane amplitudes (bigger than 200000 km) and the smaller out-of-plane amplitudes the better
(smaller than 100000 km). Solar Lissajous orbits which do not satisfy these criteria (for instance,
square Lissajous orbits) usually lead to expensive connecting trajectories in the coupled restricted
three body problems, which have to be significantly modified in the refinement procedure in order
to reduce the ∆v associated with them. Finally, one has to bear in mind that in all cases the
results are dependent on the epoch that is chosen for the coupling of the models.



Conclusions and Future work

All topics covered in this doctoral thesis are aimed at taking advantage of dynamical systems
theory in the restricted three body problem (RTBP) for applications to mission design. Some
questions arose during this work which are still open and may be the topic of further research. A
brief summary and conclusions of the results achieved, as well as hints on the possible directions
for future work are presented in what follows.

The eclipse avoidance problem in the so-called Lissajous-type orbits around L1 and L2 mo-
tivated the work presented in chapter 3. The linear approximation to the analytical description
of these orbits has been used to tackle the problem. As Lissajous-type motion essentially takes
place on a torus, it is described by a couple of angles if the amplitudes are fixed. Then, Lissajous
orbits are seen in the phase plane as straight lines of constant slope. This fact allows for a sim-
ple geometric solution not only of the eclipse avoidance problem, but also the rendez-vous and
the transfer between different Lissajous orbits using non-escape maneuvers. Consequently, the
effective phases plane, or EPP, proves to be a useful tool in mission design.

A strategy for eclipse avoidance, based on similar ideas to the ones developed in the aforemen-
tioned chapter, has been successfully implemented in the preliminary design of the Herschel-Plank
mission of the European Space Agency. This adaptability to real missions shows that the linear
approximation to Lissajous orbits allows us to obtain results which are accurate enough for our
purposes. In fact, the effect of the nonlinearities in the effective phase plane is just a slight pertur-
bation of the exclusion zones representation. Thus, if the radius of the exclusion zones is taken a
little bigger than strictly necessary, eclipse avoidance maneuvers computed in the linear problem
are usable in more realistic models. However, for the sake of completeness, some future work
will be devoted to adapting the eclipse avoidance and rendez-vous strategies to a more complete
model, using the nonlinear terms in the description of the motion.

Furthermore, the hyperbolic manifolds associated with libration point orbits can be regarded
as tubes which go away (unstable manifolds) or approach (stable manifolds) the aforementioned
orbits in a natural way as time goes by. Therefore, an intersection between the stable manifold
of an orbit and the unstable manifold of another one results in a natural asymptotic path joining
them. Homoclinic connections are found by intersecting stable and unstable manifolds associated
with a single orbit (i.e. they provide a way to asymptotically leave an orbit and return to it). On
the other hand, heteroclinic connections are found by intersecting a stable manifold associated
with an orbit and an unstable manifold associated with a different one. A method for numerically
computing homoclinic and heteroclinic trajectories between planar Lyapunov orbits for any given
Jacobi constant and RTBP mass parameter has been developed and results are presented in
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chapter 4. The aforementioned methodology has been applied to the Sun-Earth and Earth-Moon
cases, for which a description of the possible asymptotic connections up to a given number of
loops around the small mass, which are grouped in families, is presented.

This part of the work was mainly aimed at developing tools for finding intersections between
manifolds and setting the basis for a more applied research. Its natural future continuation would
be to look for intersections between other periodic or quasi-periodic libration point orbits in the
3-dimensional RTBP (such as Halo or Lissajous orbits) and other more general invariant objects
in a given energy level of the RTBP.

Finally, the idea of intersecting manifolds is exploited in a different way in chapter 5. The
Sun-Earth-Moon-spacecraft four body problem can be modelled, in a first approximation, as
two coupled RTBPs: the Sun-Earth one and the Earth-Moon one. In this way, the first part
of chapter 5 deals with the coupling of two planar RTBPs in order to approximate the Sun-
Earth-Moon problem and find transfer trajectories from lunar to solar planar Lyapunov orbits
belonging to both L2 libration regions. This work uses the ideas introduced in chapter 4 in order
to compute intersections between hyperbolic manifolds. In addition, it provides and insight into
the techniques and tools that are necessary for the coupling of different RTBPs, as well as the
problems that arise when trying to approximate a four body problem in this way. Actually, low
cost transfers between Lyapunov orbits belonging to the aforementioned libration regions have
been found and they are presented in groups or families. In particular, even complete intersections
between manifolds belonging to planar Lyapunov orbits of the two problems are presented (that
is, intersections in position and velocity coordinates), which result in zero cost transfers in the
coupled RTBPs model. Nevertheless, all results obtained by coupling two different models are
strongly dependent on the relative configuration of these models. In our work, this relative
configuration is represented by a couple of angles at time t = 0. The methodology we present is
valid for any given value of these angles, but results are presented only for particular cases. It
would be interesting, as a topic for future work, to find a complete topological description of the
aforementioned families as a function of the coupling angles.

Moreover, transfer trajectories joining Lissajous orbits around L2 points in the Sun-Earth and
Earth-Moon problems are computed in the second part of chapter 5. The coupling between 3-
dimensional RTBPs is more complicated than between planar ones, resulting in a harder search for
intersections between manifolds. In this case, trajectories which are continuous in position in the
coupled RTBPs are found. Then, the maneuvers that are needed in the coupling point for these
trajectories to become transfers are computed. Furthermore, with the aim of providing realistic
trajectories for mission design, a method for refining the coupled RTBPs trajectories between
Lissajous type orbits to JPL realistic ephemeris is presented in the last part of the chapter. In a
first step, the Sun-Earth and the Earth-Moon parts of the trajectory are independently refined to
JPL. This provides a first approximation to position continuous trajectories in JPL coordinates
with a ∆v. Such trajectories could be used as initial seeds for a trajectory optimisation algorithm
in order to obtain real low cost transfers in JPL coordinates for a given initial epoch. The use of
optimisation techniques on these trajectories is actually left as part of the future work. On the
contrary, this chapter finishes by presenting a method for slowly reducing the maneuver at the
coupling point in the JPL refined trajectories, which leads to satisfying results and even to free
trajectories joining Lissajous-type motions from the solar and lunar libration regions.
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Guide to the attached DVD

A database containing information on intersections between unstable manifolds of square Lis-
sajous orbits of the EM problem and stable manifolds of Lissajous orbits in the SE problem, with
small Az amplitude is attached to this PhD. thesis dissertation in the form of a DVD. This ap-
pendix is aimed at providing the information which is needed in order to use the aforementioned
database.

Files SE.dat and EM.dat

The files SE.dat and EM.dat contain data defining the Lissajous orbits from each of the problems
which have been used in the search for connecting trajectories.

Information concerning solar Lissajous orbits is stored in the file SE.dat. Each line in this file
contains:

i, CSE, Ax, Az

• i: an integer from 1 to 33, representing the line number in the file. This integer value is
used as a label for the orbit.

• CSE: The Jacobi constant, representing the energy level to which the orbit and its manifolds
belong.

• Ax and Az: The values of the in-plane and out-of-plane amplitudes of the Lissajous orbit in
SE RTBP coordinates normalised around L2. In order to convert these amplitudes to km,
they have to be multiplied by AU γSE2 ≈ 1.50768455 106.

The angle of the Poincaré section with the Sun-Earth x axis, φSE is fixed to 90 degrees.

Information concerning lunar Lissajous orbits is stored in the file EM.dat. Each line in this
file contains:

j, α, β, Ax, Az

• j: an integer from 1 to 3591, representing the line number in the file and which is also used
as a label characterising the corresponding orbit.
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• α, β: Angular values in degrees which define the relative configuration of the EM and the
SE x axis at the moment of the coupling between the RTBPs. Remember that only values
of these phases such that α + β ∈[80,120] are used.

• Ax, Az: the values of the in-plane and out-of-plane amplitudes of the Lissajous orbit in EM
adapted coordinates around L2. In order to convert these amplitudes to km, they have to
be multiplied by 3.844 105γEM2 ≈ 6.451462 104.

Intersections on the Poincaré section, file inters.dat

The file inters.dat contains information on the overlapping regions on the Poincaré section
between the manifolds of the Lissajous orbits defined in SE.dat and EM.dat.

The unstable manifold of each of the orbits in EM.dat has been integrated forwards in time,
until the Poincaré section has been reached. A change of coordinates on this section (from EM
to SE) using the phases α and β has been performed and the cuts in SE coordinates have been
stored. On the other hand, the stable manifold of each of the orbits in the file SE.dat has been
integrated backwards in time, and its cut with the Poincaré section has been compared to each
of the stored cuts belonging to manifolds from the EM side.

Every time that an overlapping in yz coordinates on the Poincaré section between the cuts
coming from the SE and the EM sides has been detected, a new line has been added to the file
inters.dat, containing:

i, j, CSE, ASEx , ASEz , α, β, AEMx , AEMz , ym, yM , zm, zM

• i, j: integers which indicate which are the orbits from the SE.dat and EM.dat files, re-
spectively, whose associated manifolds have been found to intersect on the Poincaré section.

• CSE, ASEx , ASEz : Jacobi constant and amplitudes of the SE Lissajous orbit labelled with
integer i in EM.dat (amplitudes in km).

• α, β: relative configuration phases used for coupling the RTBPs.

• AEMx , AEMz : amplitudes of the EM Lissajous orbit labelled with integer j in the file EM.dat

(amplitudes in km).

• ym, yM , zm, zM : the overlapping between the cuts of the manifolds takes places inside the
rectangle [ym, yM ]×[zm, zM ]⊂ R

2. This rectangle is a raw approximation of the intersecting
region on the section, obtained by comparing the minimum and maximum values of the y and
z coordinates in each of the cuts (SE and EM manifolds) and choosing the most restrictive
ones (greatest of the minimums and smallest of the maximums).

Connecting trajectories

Each line of the file inters.dat contains the necessary information for starting the search for
connecting trajectories between the manifolds associated to two particular Lissajous orbits.
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First of all, the in-plane, φ, and out-of-plane, ψ, initial phases on the unstable manifold of the
EM Lissajous are discreetised. In particular, 100 equidistant phases are taken in [0,2π] (both for φ
and for ψ). Then, the initial conditions on the unstable manifold of the EM Lissajous defined by
these phases and the corresponding amplitudes are integrated to the Poincaré section. Only the
couples of phases whose integrated state falls inside the rectangle [ym, yM ]×[zm, zM ] are selected.
A Newton method is then applied to the starting phases on the corresponding SE Lissajous, in
order to match the points on the section with the ones from the SE Lissajous as explained in
section 5.3.6. Note that for the sake of simplicity in building this database, the Newton method
has only been applied to the SE side4.

The connecting trajectories through each point of the overlapping region are associated to
a ∆v, which stands for the difference in velocities between the SE and EM branches that have
been integrated independently to the section. Remember also from chapter 5 that more than one
connecting trajectory can exist for a given point of the overlapping region. That is to say that
more than one couple of phases from the SE side can be associated to each of the initial phases
in the EM side.

Therefore, a large amount of information has to be stored concerning the intersections de-
fined by each line in inters.dat. This information is organised in two files: sistemn.dat and
colorsn.dat.

Files sistemn.dat and colorsn.dat

Let n be the number of a line contained in the file inters.dat. This information contained in
this line is used as an input in our algorithm for the search of connecting trajectories. Once
the trajectories associated to the input line n have been computed, two files are generated:
sistemn.dat and colorsn.dib.

sistemn.dat

This file contains information on which couples of phases from the EM and SE manifolds are joined
by connecting trajectories. Furthermore, the points through which the connecting trajectories
cross the section, as well as the necessary ∆v and the integration times are also contained in it.

Each file sistemn.dat has a header like the one that has been copied here as an example
(corresponding to n=54015):

# Amplituds TL 0.100000E-02 0.000000E+00 0.661003E-01 0.201504E+00

# Amplituds ST 0.000000E+00 -0.100000E-02 0.117628E+00 0.400000E-01

# Angle seccio, alfa i beta 0.900000E+02 0.950000E+02 0.150000E+02

# I1,I2,F1S,F2S,X,Y,Z,XP,YP,ZP,DV1,DV2,DV3,T1,T2

# I1,I2 fases TL, X,Y,Z,XP,YP,ZP punt corresponent

4That is to say that the points on the overlapping region defined by each of the couple of phases (φi, ψj) =
(2π i

100
, 2π j

100
) are the ones which define the net on the overlapping region to which the aforementioned section of

chapter 5 refers. In other words, there is no need for applying a Newton method on the EM side of the integration,
because each point on the net is already associated with a couple of phases on the manifold of the lunar Lissajous
orbit.
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# F1S,F2S fases ST

# T1,T2 temps de liss a seccio.(1:TL, 2:ST)

# DV=XST-XTL --> (XP,YP,ZP) + DV = V_ST

# Finestra fases TL 0.000000E+00 0.628319E+01 0.000000E+00 0.628319E+01

# Finestra fases ST 0.109956E+01 0.163363E+01 0.355000E+01 0.603186E+01

# Num.fases TL, ST 100 100 53 200

• The first two lines contain the values of the amplitudes A1, A2, Ax, Az as explained in
section 5.3.5 (A1 and A2 are the hyperbolic amplitudes, which are either 0 or ε, depending
on whether we want to approximate the stable or the unstable manifold. Ax and Az are the
usual in-plane and out-of-plane amplitudes in RTBP normalised coordinates around L2).
The amplitudes in the first line correspond to the EM problem, while the ones in the second
line to the SE problem.

• Three angular values are contained in the third line (in degrees):

– φSE: the angle between the Sun-Earth x axis and the Poincaré section.

– α and β: the phases representing the relative configuration of the SE and EM RTBPs
at the moment of the coupling (see figure 5.15).

• From the 4th to the 8th line of the header, a short explanation of the meaning of each of the
columns of the file is given:

– First two columns: integer values I1 and I2. These values define the initial phases on
the EM manifold in a net of 100 equidistant phases (φ = 2π I1

100
, ψ = 2π I2

100
).

– Third and fourth column: F1S, F2S ∈ R, in radians. In-plane and out-of-plane phases
on the SE Lissajous manifold which represent the arriving phases of the connecting
trajectory.

– From the 5th to 10th column: position and velocity coordinates of the state on the
Poincaré section which is the result of integrating the EM initial condition represented
by phases I1 and I2 and the corresponding amplitudes (state given in SE barycentric
RTBP coordinates).

– From the 11th to the 13th column: ∆v vector in SE barycentric RTBP coordinates
which has to be added to the integrated point coming from the EM manifold in order
to jump to the SE manifold (i.e. to convert the velocity vector to the one on the SE
manifold defined by phases F1S and F2S).

– Last two columns: T1S, T2S∈ R. Integration times from the initial conditions on the
manifolds to the Poincaré section (T1S refers to the EM side and so it represents a for-
wards integration time, while T2S to the SE side and therefore represents a backwards
integration time). Both time values are expressed in SE RTBP time units (365.25 days
= 2π SE RTBP time units).

• Finally, additional information on the windows (Finestra) and number of phases which have
been used on both manifolds is contained in the last three lines of the header. This is related
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to the fact that not all initial phases on the manifolds lead to points that belong to the
overlapping region on the section. Actually, the subset of [0, 2π] × [0, 2π] which contains
initial phases leading to the overlapping region [ym, yM ]×[zm, zM ] is not usually a connected
set. Thus, a study has to be performed for each of the connected components of the subset
of phases. This is why the three lines of information about the windows and number of
phases appear not only in the header but in some other parts of the file sistemn.dat.

colorsn.dib

The other file associated with line n of inters.dat is called colorsn.dat The information
contained in this file is used for drawing pictures like the ones in figures 5.22, 5.23 and 5.24.
Essentially, once the file sistemn.dat has been obtained, one can count the number of connecting
trajectories starting at each particular couple of phases on the EM Lissajous. Then, the cheapest
one can be chosen and this information, together with the y and z coordinates of the point through
which the connecting trajectory crosses the Poincaré section is stored in file colorsn.dib.

The files colorsn.dib also have a header, similar to the one in sistemn.dat but shorter. A
sample header has been reproduced here (also corresponding to n=54015):

# Amplituds TL 0.100000E-02 0.000000E+00 0.661003E-01 0.201504E+00

# Amplituds ST 0.000000E+00 -0.100000E-02 0.117628E+00 0.400000E-01

# Angle seccio, alfa i beta 0.900000E+02 0.950000E+02 0.150000E+02

# Finestra fases TL 0.000000E+00 0.628319E+01 0.000000E+00 0.628319E+01

# I1,I2,Y,Z,N--I1,I2:fases TL; Y,Z:coord.seccio

# N: numero de connexions ST per aquestes fases TL

• The first two lines are exactly the same as in the file sistemn.dat containing the values of
the hyperbolic and central amplitudes of the integrated manifolds.

• The third line is also the same as in sistemn.dat, containing the angular values of the φSE,
α and β phases in degrees.

• In the fourth line, the intervals of in-plane and out-of-plane phases which have been inte-
grated on the EM Lissajous (always discreetised in 100 equidistant values) are shown.

• Finally, the last lines explain the meaning of each one of the columns of the data stored in
the file:

– I1, I2: integers (from 1 to 100) defining the starting phases of the connecting trajecto-
ries on the EM manifold (φ = 2π I1

100
, ψ = 2π I2

100
).

– Y, Z: y and z coordinates of the state on the section associated with phases I1 and I2
(in SE barycentric RTBP coordinates).

– N: number of connecting trajectories starting at the initial conditions defined by phases
I1, I2 on the EM manifold and reaching the SE Lissajous stable manifold.

– The last column in each line shows the cost in meters per second of the cheapest
connecting trajectory, among the N possibilities.
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How to find information on particular connecting trajectories

If one is interested in the connecting trajectories between a given pair of Lissajous orbits contained
in the database, the first thing to do is to find out which are the values i and j which characterise
the orbits in the files EM.dat and SE.dat respectively. Tables 1, 2 and 3 provide indications in
this direction.

Az SE RTBP normalised around L2

CSE 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
3.00083 12 13 14 15 16 17 18 19
3.00084 20 21 22 23 24 25 26 27
3.00085 28 29 30 31 32 33 – –

Table 1: Line number in file SE.dat associated with the SE Lissajous orbit depending on the Jacobi constant
and Az amplitude. The values of the out-of-plane amplitudes contained in the table range from 15000 to
120000 km. Small out-of-plane amplitudes in the SE side are prone to provide cheap connecting trajectories
in the coupled RTBPs model, and this is why these orbits have been included in the database.

Secondly, one has to check whether the line starting by ”i,j” exists in the file inters.dat.
If no line in inters.dat starts by ”i,j” it means that no overlapping region has been de-
tected between the manifolds using this Poincaré section. Otherwise, if the intersection is
stored in inters.dat, the number of the line, n, leads to the associated files sistemn.dat
and colorsn.dat. These data files have been grouped in directories and compressed in order to
simplify its storage. Table 4 indicates which is the compressed directory DN.tar.gz associated
with each range of lines of the file inters.dat.

Finally, due to the huge amount of data that we are dealing with, only some lines in inters.dat

were selected and the corresponding files stored in the DVD. Despite this fact, the present database
contains a big sample of results, which can be used as initial seeds for a wide range of trajectory
design studies and provides a complete qualitative idea of the behaviour of the intersections. Our
method can be used on any given Lissajous orbits and initial relative configuration, and therefore,
any particular intersection between manifolds can be computed when necessary, even if it is not
contained in the database.
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α\β 75 80 85 90 95 100 105 110 115 120
0 1–16 17–32 33–48 49–64 65–80 81–96 97–112 113–128 129–144
5 145–160 161–176 177-192 193–208 209–224 225–240 241–256 257–272 273–288

α\β 65 70 75 80 85 90 95 100 105 110
10 289–304 305–320 321–336 337 –352 353–368 369–384 385–400 401–416 417–432
15 433–448 449–464 465–480 481–496 497–512 513–528 529–544 545–560 561–576

α\β 55 60 65 70 75 80 85 90 95 100
20 577–592 593–608 609–624 625–640 641–656 657–672 673–688 689–704 705–720
25 721–736 737–752 753–768 769–784 785–800 801–816 817–832 833–848 849–864

α\β 45 50 55 60 65 70 75 80 85 90
30 865–880 881–896 897–912 913–928 929–944 945–960 961–976 977–992 993–1008
35 1009-1024 1025-1040 1041-1056 1057-1072 1073-1088 1089-1104 1105-1120 1121-1136 1137-1152
α\β 35 40 45 50 55 60 65 70 75 80
40 1153-1168 1169-1184 1185-1200 1201-1216 1217-1232 1233-1248 1249-1264 1265-1280 1281-1296
45 1297-1312 1313-1328 1329-1344 1345-1360 1361-1376 1377-1392 1393-1408 1409-1424 1425-1440

α\β 25 30 35 40 45 50 55 60 65 70
50 1441-1456 1457-1472 1473-1488 1489-1504 1505-1520 1521-1536 1537-1552 1553-1568 1569-1584
55 1585-1600 1601-1616 1617-1632 1633-1648 1649-1664 1665-1680 1681-1696 1697-1712 1713-1728

α\β 15 20 25 30 35 40 45 50 55 60
60 1729-1744 1745-1760 1761-1776 1777-1792 1793-1808 1809-1824 1825-1840 1841-1856 1857-1872
65 1873-1888 1889-1904 1905-1920 1921-1936 1937-1952 1953-1968 1969-1984 1985-2000 2001-2016

α\β 5 10 15 20 25 30 35 40 45 50
70 2017-2032 2033-2048 2049-2064 2065-2080 2081-2096 2097-2112 2113-2128 2129-2144 2145 -2160
75 2161-2176 2177-2192 2193-2208 2209-2224 2225-2240 2241-2256 2257-2272 2273-2288 2289-2304

α\β 0 5 10 15 20 25 30 35 40 45
80 2305-2320 2321-2336 2337-2352 2353-2368 2369-2384 2385-2400 2401-2416 2417-2432 2433-2448
85 2449-2464 2465-2480 2481-2496 2497-2512 2513-2528 2529-2544 2545-2560 2561-2576
90 2577-2592 2593-2608 2609-2624 2625-2640 2641-2656 2657-2672 2673-2688
95 2689-2704 2705-2720 2721-2736 2737-2752 2753-2768 2769-2784
100 2785-2800 2801-2816 2817-2832 2833-2848 2849-2864
105 2865-2880 2881-2896 2897-2912 2913-2928
110 2929-2944 2945-2960 2961-2976
115 2977-2992 2993-3008
120 3009-3024

Table 2: Line numbers in file EM.dat associated with the EM Lissajous orbits, depending on the values of
α and β. For each couple (α, β), a range of lines is indicated in the table, as several square Lissajous orbits
around L2 point have been considered. In particular, 15 different square EM Lissajous orbits with Az from
5000 to 20000 km (the corresponding Ax in these EM square Lissajous orbits satisfies Az = 3.048Ax).
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α\β 75 80 85 90 95 100 105 110 115 120
0 3025-3027 3028-3030 3031-3033 3034-3036 3037-3039 3040-3042 3043-3045 3046-3048 3049-3051
5 3052-3054 3055-3057 3058-3060 3061-3063 3064-3066 3067-3069 3070-3072 3073-3075 3076-3078

α\β 65 70 75 80 85 90 95 100 105 110
10 3079-3081 3082-3084 3085-3087 3088-3090 3091-3093 3094-3096 3097-3099 3100-3102 3103-3105
15 3106-3108 3109-3111 3112-3114 3115-3117 3118-3120 3121-3123 3124-3126 3127-3129 3130-3132

α\β 55 60 65 70 75 80 85 90 95 100
20 3133-3135 3136-3138 3139-3141 3142-3144 3145-3147 3148-3150 3151-3153 3154-3156 3157-3159
25 3160-3162 3163-3165 3166-3168 3169-3171 3172-3174 3175-3177 3178-3180 3181-3183 3184-3186

α\β 45 50 55 60 65 70 75 80 85 90
30 3187-3189 3190-3192 3193-3195 3196-3198 3199-3201 3202-3204 3205-3207 3208-3210 3211-3213
35 3214-3216 3217-3219 3220-3222 3223-3225 3226-3228 3229-3231 3232-3234 3235-3237 3238-3240
α\β 35 40 45 50 55 60 65 70 75 80
40 3241-3243 3244-3246 3247-3249 3250-3252 3253-3255 3256-3257 3258-3260 3261-3263 3264-3266
45 3267-3269 3270-3272 3273-3275 3276-3278 3279-3281 3283-3285 3286-3288 3289-3291 3292-3294

α\β 25 30 35 40 45 50 55 60 65 70
50 3295-3297 3298-3300 3301-3303 3304-3306 3307-3309 3310-3312 3313-3315 3316-3318 3319-3321
55 3322-3324 3325-3327 3328-3330 3331-3333 3334-3336 3337-3339 3340-3342 3343-3345 3346-3348

α\β 15 20 25 30 35 40 45 50 55 60
60 3349-3351 3352-3354 3355-3357 3358-3360 3361-3363 3364-3366 3367-3369 3370-3372 3373-3375
65 3376-3378 3379-3381 3382-3384 3385-3387 3388-3390 3391-3393 3394-3396 3397-3399 3400-3402

α\β 5 10 15 20 25 30 35 40 45 50
70 3403-3405 3406-3408 3409-3411 3412-3414 3415-3417 3418-3420 3421-3423 3424-3426 3427-3429
75 3430-3432 3433-3435 3436-3438 3439-3441 3442-3444 3445-3447 3448-3450 3451-3453 3454-3456

α\β 0 5 10 15 20 25 30 35 40 45
80 3457-3459 3460-3462 3463-3465 3466-3468 3469-3471 3472-3474 3475-3477 3478-3480 3481-3483
85 3484-3486 3487-3489 3490-3492 3493-3495 3496-3498 3499-3501 3502-3504 3505-3507
90 3508-3510 3511-3513 3514-3516 3517-3519 3520-3522 3523-3525 3526-3528
95 3529-3531 3532-3534 3535-3537 3538-3540 3541-3543 3544-3546
100 3547-3549 3550-3552 3553-3555 3556-3558 3559-3561
105 3562-3564 3565-3567 3568-3570 3571-3573
110 3574-3576 3577-3579 3580-3582
115 3583-3585 3586-3588
120 3589-3591

Table 3: Line numbers in file EM.dat associated with the EM Lissajous orbits, depending on the values
of α and β. For each couple (α, β), a range of lines is indicated in the table, as several square Lissajous
orbits around L2 point have been considered. In particular, 3 different square EM Lissajous orbits with Az

equal to 21000, 22000 and 23000 km (the corresponding Ax in these EM square Lissajous orbits satisfies
Az = 3.048Ax).
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directory lines directory lines directory lines
D01 90– 1735 D12 19270–21079 D23 38580–40295
D02 1770– 3485 D13 21080–22025 D24 40330–42045
D03 3520– 5235 D14 23250–24545 D25 42080–43795
D04 5270– 6985 D15 24580–26295 D26 43830–44880
D05 7020– 8735 D16 26330–28045 D27 46035–47295
D06 8770–10485 D17 28080–29795 D28 47400–48310
D07 10520–12235 D18 29830–31595 D29 49080–50795
D08 12270–13985 D19 31580–33295 D30 52580–54260
D09 14020–15735 D20 33330–35045 D31 54295–56045
D10 15770–17485 D21 35080–36795 D32 56080–57795
D11 17520–19235 D22 36830–38545 D33 57830–59825

Table 4: Ranges of lines of the file inters.dat whose associated files sistemn.dat and colorsn.dat are
contained in each one of the compressed directories of the database.
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Resum

Aquesta tesi doctoral està emmarcada en el camp de l’astrodinàmica. Concretament, tracta el
disseny de missió en òrbites de libració. El punt de partida de tots els estudis continguts en la
present memòria és la teoria de sistemes dinàmics, que proporciona una descripció acurada de la
dinàmica en les regions de libració. No obstant això, aquest treball és aplicat. Per tant, fa ús
d’aquesta descripció teòrica amb l’objectiu de donar solucions a problemes que s’han detectat en
el disseny de missions reals.

El problema restringit de tres cossos, o RTBP, és un model ben conegut que serveix per
estudiar el moviment d’un cos de massa infinitessimal sota l’atracció gravitatòria de dos cossos
molt massius. Els 5 punts d’equilibri d’aquest model han estat motiu de nombrosos estudis des
del segle passat. Els resultats continguts en aquesta memòria fan referència a dos d’aquests
punts d’equilibri: L1 i L2, que es troben un a cada banda del més petit dels mencionats cossos
massius, i són els que han centrat més interès per aplicacions pràctiques en les últimes dècades
(per missions com SOHO, Genesis, Herschel-Planck. . . ). La inestabilitat és una propietat bàsica
d’aquests punts d’equilibri, que és heredada per les òrbites que els envolten i és la responsable
de l’existència de direccions estables i inestables en cada punt de les òrbites de libració. La unió
d’aquestes direccions, o més precisament, de totes les trajectòries asimptòtiques que emanen de
les òrbites periòdiques i quasi-periòdiques al voltant de L1 i L2, formen un objecte invariant que
o bé s’apropa (en el cas de les direccions estables) o bé s’allunya (en el cas de les inestables) de
l’entorn dels punts de libració. Aquests objectes invariants s’anomenen varietats hiperbòliques
de les òrbites de libració. Un coneixement i descripció adequats de les esmentades varietats pot
ser extremadament útil pel disseny de missions, ja que són la clau per a entendre la dinàmica del
sistema.

El primer problema tractat en el nostre treball són les estratègies per evitar eclipsis en òrbites
de Lissajous. Genèricament, qualsevol missió en òrbita al voltant del punt L2 del sistema Terra-Sol
es veu afectat per ocultacions degudes a l’ombra de la Terra, a no ser que se li apliquin maniobres
per evitar eclipsis. Si l’òrbita és al voltant de L1, els eclipsis són deguts a la forta influència
electromagnètica del Sol en aquestes regions. Per altra banda, les òrbites de Lissajous són un
tipus d’òrbites de libració que resulten de la combinació de dues oscil.lacions perpendiculars.
El seu principal avantatge sobre altres tipus d’òrbites, com ara les Halo, és que les amplitudes
d’una òrbita de Lissajous poden ser escollides independentment una de l’altra i això les fa més
adaptables als requeriments de cada missió. En aquest treball utilitzem l’aproximació lineal a
la descripció anal.ĺıtica de les òrbites de Lissajous per tal de calcular l’anomenada direcció de
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no-escapament, que permet fer transferències entre diferents òrbites canviant les amplituds o les
fases (o tot a la vegada) i al mateix temps evitar la part inestable del moviment.

A més, un altre problema que també és interessant pel disseny de missió és el rendez-vous,
entès com la manera de fer que dos satèl.lits diferents es trobin en una òrbita o s’apropin fins a una
distància donada. Les eines desenvolupades per les estratègies de prevenció d’eclipsis ens permeten
també planificar maniobres senzilles de rendez-vous, ja sigui per incloure-les en l’anàl.lisi i disseny
preliminar de la missió, o bé quan aquesta ja s’està portant a terme, com a pla d’emergència.

Per altra banda, existeixen canals de baix cost que uneixen els punts L1 i L2 d’un sistema
donat, com els que va utilitzar la missió Genesis. Aquest canals representen una manera natural
de transferir d’una regió de libració a l’altra i es poden trobar intersecant varietats estables i
inestables d’òrbites al voltant de L1 i L2. Si tenim present que les varietats estables tendeixen cap
a l’objecte que les genera quan el temps avança, i que les varietats inestables fan el mateix però si
fem anar el temps enrera, una intersecció entre una varietat estable i una d’inestable proporciona
un camı́ asimptòtic entre els objectes invariants corresponents. Connexions d’aquest tipus entre
òrbites de Lyapunov planes, que són òrbites periòdiques entorn L1 i L2, són estudiades en aquesta
tesi i espećıficament calculades pels casos dels problemes restringits Sol-Terra i Terra-Lluna.

A més, la idea d’intersecar varietats estables i inestables per tal de trobar connexions entre
òrbites es pot aplicar també per trobar camins de baix cost entre les regions de libració del sistema
Terra-Lluna i les del sistema Terra-Sol. Se sap que les varietats estables de les òrbites entorn els
punts de libració lunars no s’apropen prou a la Terra com per proporcionar una transferència de
baix cost des de l’entorn de la Terra fins a la Lluna. En canvi, les varietats estables i inestables
d’algunes òrbites de libració del sistema Sol-Terra śı que s’acosten a la Terra. Per tant, si es
pogués trobar un camı́ natural entre les òrbites de libració solars i les lunars, s’obtindria una
manera barata d’anar a la Lluna fent servir varietats invariants. I al revés, un camı́ de les regions
de libració lunars cap a les regions de libració solars permetria, per exemple, que una estació
de servei fos col.locada en òrbita en un punt de libració de la Lluna i serv́ıs com a base per
donar servei a les missions que operen en òrbites de libració del sistema Sol-Terra. Aquesta és
bàsicament la idea de l’última part de la tesi. Amb l’objectiu d’unir les regions de libració dels dos
problemes esmentats, el problema de quatre cossos Sol-Terra-Lluna-nau es pot descomposar en dos
problemes restringits de 3 cossos. Aix́ı, podem buscar interseccions entre les varietats pertanyents
a òrbites de cada un dels problemes. Per començar, busquem trajectòries que connectin les òrbites
planes de Lyapunov dels sistemes Terra-Sol i Terra-Lluna. Més endavant, la búsqueda es porta
cap al problema tridimensional, amb el conseqüent augment de la dificultat per descriure els
objectes i trobar-ne interseccions. No obstant, un mètode per trobar trajectòries que connectin
òrbites de Lissajous dels dos models s’ha pogut trobar i s’exposa en el caṕıtol final. I finalment,
es presenta també un mètode per refinar aquestes trajectòries trobades acoblant dos problemes
restringits de tres cossos cap a efemèrides reals JPL. En alguns casos, és possible anar reduint la
maniobra necessària en el punt d’acoblament fins a valors molt petits o zero, cosa que proporciona
trajectòries realistes de cost zero a punt per ser utilitzades en el disseny de missions.
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