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Abstract
Loft Orbital deploys space infrastructure as a service. With the advent of smallsat technology and the fast growth

of the space-as-a-service market, this infrastructure aims at supporting a broad range of applications for a variety of
customers, involving a multiplicity of spacecraft platforms and payload types.

In order to operate these heterogeneous space systems, while providing high controllability and monitoring
capacity to its customers, Loft has developed a fully-automated, web-based mission control system (MCS), called
Cockpit. Designed to grant access and control of on-orbit assets to operators as well as customers, Cockpit can be
used by end-users to send requests to task their payloads. Predicated on a set of temporal and/or geospatial
constraints and service-level agreement (SLA) based policies, these requests can be formulated either
programmatically, leveraging Cockpit’s application programming interface (API), or interactively, using its
graphical user interface (GUI). This entity is thus responsible for coordinating and automating end-to-end mission
planning and scheduling, from end-user requests ingestion and processing, schedule management and optimization,
to tasking and execution monitoring.

The diversity of space systems being tasked, the complexity of predicting and simulating their state over long time
horizons, the flexibility and the deconfliction capability required by an open requesting engine, and the curse of
dimensionality of the scheduling problem pose unique mission planning and scheduling challenges.

In order to respond to these challenges, Cockpit’s mission management services implement abstractions based on
simple and generic requesting and scheduling concepts. This makes for a mission-agnostic simulation, processing
and tasking core, combined with mission-specific configurations and resolvers, fostering software scalability and
maintainability. In addition, and without compromising with observability of the space systems being tasked, these
abstractions promote computational tractability of the scheduling problem — two prerequisites for performing
complex simulation, resource allocation and planning optimization.

This paper presents some of the key aspects and tradeoffs of the aforementioned technical challenges and how
Cockpit’s mission planning system is built to achieve automated planning and scheduling of Loft’s heterogeneous
constellation.
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Acronyms/Abbreviations

ADCS Attitude Determination and Control System MCS Mission Control System
AOI Area of Interest MILP Mixed-Integer Linear Programming
API Application Programming Interface SDK Software Development Kit
GUI Graphical User Interface SLA Service-Level Agreement
LEO Low-Earth Orbit YAM Yet Another Mission
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1. Introduction

Loft Orbital is a provider of space infrastructure as a service, accommodating and operating a variety of customer
payloads, from remote sensing or communication payloads, to software-only “virtual” payloads, and technology
demonstrations. Typical Loft missions can be either rideshare missions with multiple payloads onboard, or dedicated
missions, deployed onto either a single or multiple spacecraft. As of March 2023, its fleet consists of three satellites
in LEO; YAM-2, YAM-3 and YAM-5, hosting multiple payloads. Twenty-five more satellites are manifested for
launch through 2025, including two dedicated subconstellations.

Fig. 1. Various satellite platforms compose Loft Orbital’s heterogenous space infrastructure. This illustration
includes flying and planned missions.

As the constellation grows, both in number and diversity, standardization and automation of spacecraft operations
is critical to the company scaling and ultimately achieving its business goals. Loft is thus continuously developing
Cockpit, its platform and payload-agnostic MCS, to orchestrate mission planning and fully automate operations of
its heterogeneous constellation [1,2]. With Cockpit, end-users — both internal, i.e., SatDevOps1 operators, and
external, i.e., customers — are granted with high controllability and monitoring capabilities over their on-orbit
assets. The MCS is responsible for processing submitted requests, based on a set of temporal and/or geospatial
constraints (e.g., AOIs) and/or other geometrical constraints, along with asset-specific settings. Once feasible and
safe opportunities are identified, depending on simulation output and SLA considerations, these must be translated
into actual operational plans to be executed onboard the space asset(s) involved, while being coordinated with
ground segment resources.

Mission management, requesting and scheduling services of Cockpit are in charge of processing these requests,
and performing schedules management and optimization. Operational plans are based on tasks, efficiently assigned
to relevant sub-systems, with the goal of eventually maximizing data collection throughput. The multiplicity and
complexity of the space systems being tasked pose unique resource allocation and scheduling challenges. These
space systems are frequently oversubscribed, meaning that the number of requests chronically exceeds the feasible
number of jobs that these systems can satisfy [5], which is even more true in the case of rideshare missions hosting
multiple payloads, generally competing for common resources. The satellite tasking problem, that is, arranging
execution times of a group of tasks given a varied set of request-defined and resource constraints and objectives, is
essentially an NP-hard (nondeterministic polynomial-time hard) constraint satisfaction problem [6,7].
Request-defined constraints include limited visibility time windows with the target area, Sun elevation angle,
off-nadir angle, or even cloud coverage. Resource constraints comprise energy capacity, finite agility, data storage
capacity, communication bandwidth, sub-system availability and task precedence relationships. Objectives
fundamentally consist of maximizing data collection throughput, i.e., satisfying the largest possible number of
requests.

Cockpit is built with the intention of addressing this problem, in the context of a heterogeneous spacecraft
constellation. The MCS is eventually orchestrating end-to-end mission planning, scheduling and operations, from
ingestion of end-user requests via its API or its GUI, their processing and the optimized tasking of the infrastructure

1 SatDevOps designates Loft Orbital’s methodology to dispatch satellite operations (SatOps) knowledge and
responsibilities across the various engineering teams, rather than having a dedicated SatOps team [3,4].
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assets (e.g. spacecraft, ground stations, networks, servers) [1,2]. Its mission management services implement
requesting and scheduling abstractions, combined with mission-specific configurations and resolvers, that promote
not only software scalability and maintainability, but also tractability of the scheduling problem. Generic requesting
concepts help describe this problem and derive potential opportunities. Simple scheduling abstractions and a tasking
framework, relying on a constraints-based configuration language, foster their translation into operational scenarios,
and eventually the construction of a refined schedule, leveraging optimization techniques.

This paper is organized as follows. Section 2 introduces the satellite scheduling problem in more detail and
provides an overview of previous research, as well as some of their applications to state-of-the-art operational
mission planning systems. Common optimization techniques, as well as examples of mission planning tools are
presented, while highlighting the specificities of the problem in Loft Orbital’s case of heterogeneous space systems.
In this context, the abstraction approach inherent to Cockpit is defined. Section 3 focuses on Cockpit’s requesting
and scheduling concepts, its request processing approach, and its schedule generation mechanisms. Some more
aspects on simulation, on the enforcement of SLA-based policies, and on the philosophy of combining abstractions
and configurations to solve these problems are depicted. Ways of further automation of data collection planning,
namely via event-driven requesting, are also discussed. Finally, some conclusions and ways forward are presented in
section 4.

2. Background

2.1 The Satellite Scheduling Problem
As listed by Potin [8], the Earth observation satellite tasking problem is an example of an oversubscription

scheduling problem that is characterized by a number of constraints:
- Revisit limitations: visibility time windows between a satellite and a given observation target are limited,

although predictable.
- Time required to take each image.
- Cloud coverage.
- Energy capacity and thermal control.
- Finite agility: slewing, i.e., transitioning between different look angles, requires non-zero time.
- Pointing angle: the highest resolution images are usually obtained by nadir pointing.
- Limited onboard data storage capacity.
- Ground station availability: visibility time windows are restricted as with any other target, and

communication bandwidth is limited.
- Coordination of multiple satellites and/or stereo pair acquisition of the same target (either by multiple

sensors, or a single sensor several times).
In some cases, such as the Loft Orbital constellation case to some degree, these constraints are complexified by

additional factors, such as the need to balance between the competing objectives of observation and data
downlinking [9] — some satellites undertaking only one of the two at a time —, or heterogeneous properties of
satellites and sensors [10]. For some subsets of spacecraft, station-keeping and maneuvering constraints might also
need to be included.

Arranging execution times of a set of tasks while satisfying the aforementioned constraints is an NP-hard
constraints satisfaction problem [6,7]. A large amount of research exists on this problem. Historically, these
researches initially focused on single satellite scheduling problems. Lemaı̂tre et al. [11] investigated a simple
sequence-based greedy algorithm, dynamic programming and constraint programming approaches, as well as local
search. Heuristic algorithms became effective methods for solving combinatorial optimization problems [5], but
with some drawbacks, such as inherent non-determinism (no guarantee of optimality), and difficulty of tuning
parameters [11]. Genetic algorithm approaches were tried by Parish [12] for requests ordering and schedule
generation based on simple rules, and investigated in many others in the context of satellite scheduling. Globus et al.
[5,13] compared several stochastic algorithms applied to realistic satellite scheduling problems, including variants of
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the genetic algorithm, hill climbing, simulated annealing, squeaky wheel optimization and iterated sampling. They
concluded that simulated annealing outperformed other studied techniques.

In following studies, the problem was extended to multiple satellites. It has been approached by heuristic
algorithms too, such as genetic or priority-based [14] algorithms. Wang et al. [14] presented a nonlinear model of
the satellite constellation scheduling problem with a priority-based heuristic. Mixed integer linear programming
(MILP) formulations were then provided to overcome limitations of heuristic algorithms, for instance by
Monmousseau [15], in combination to a simulated annealing approach, or Kennedy et al. [16]. Terra Bella (formerly
known as Skybox Imaging and acquired by Planet Labs) used MILP approaches in combination with dynamic
programming heuristics for competing imaging scheduling and data downlink scheduling of their constellation [9].
Cho et al. [10,17] also used MILP formulations, considering heterogeneous properties of satellites and/or including
both energy and data capacity constraints. Liu et al. [7] also proposed a MILP model, including task switching time,
energy and data capacity constraints, in combination with a heuristic search algorithm based on a symmetric
recurrent neural network. Eddy and Kochenderfer [18] first formulated the satellite task scheduling problem as a
semi-Markov decision process (semi-MDP). They explored the efficiency of forward search and Monte-Carlo tree
search algorithms compared with MILP, graph search and rule-based strategies. These strategies were applied to
multi-objectives Earth imaging satellite problems with a single agent, taking into account a wide range of spacecraft
tasking types. Later, they used graph theory to further interpret the satellite tasking problem as an undirected sparse
graph [19], showing that the problem can be posed as a maximum independent set problem, for which the ReduMIS
algorithm can be leveraged in a multi-agent context. This approach showed good results with respect to traditional
MILP and seemed well suited for large constellations and large search-space problems. Hadj-Salah et al. [20] also
leveraged the MDP formulation but focused on reinforcement learning and deep neural networks to find optimal
policies that an agent can learn for optimally imaging large areas with a constellation in a highly dynamic
environment (e.g., considering cloud coverage). This approach is all-the more interesting that their intent is to target
a heterogeneous spacecraft constellation to satisfy optical imaging requests. Finally, Liu et al. [21] suggested a
non-centralized approach to mission planning by modeling a distributed Earth observation satellite as a multi-agent
system. Advantages of game theory solution algorithms applied to these systems include self-organization,
scalability and autonomy properties. This approach seems particularly relevant in the case of ever-growing
constellations, composed of space systems from different generations, and thus with disparate properties. Adaptive
particle swarm optimization and tabu search were applied to a constellation of spacecraft involving different kinds of
payloads, such as synthetic aperture radars (SARs) and optical imagers.

2.2 Automated Mission Planning Systems
Automation of mission planning is critical to operating and scaling a heterogeneous spacecraft constellation such

as Loft Orbital’s.
The 2018 CCSDS informational report on mission planning and scheduling [22] listed some of the main

characteristics of fully automated planning systems:
- Operator involvement should be limited to monitoring the planning and execution processes, and,

ultimately, only to intervening in case of anomalies.
- Service-oriented architectures allow for the automated interaction between different planning entities.
- Web-based services allow external users to interact with the mission planning system.
- These services must function autonomously and run the planning process, which essentially consists of

optimizing the priority of tasks among the pool of received requests, versus resources and constraints.
In the case of missions hosting multiple payloads, such as some rideshare YAMs conducted by Loft, planning is

even more complex — resources and constraints should be globally defined, or an explicit part of requests.
Modern mission planning tools naturally tend to be designed in order to follow the aforementioned criteria. As for

the latter criterion specifically, some schedule optimization techniques mentioned in the previous section 2.1 may be
implemented as part of these systems. Some examples are presented in the rest of this section.
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As foreseen by Frank et al. [23], it is indeed not viable to task satellites of a fleet individually and focus should be
placed on service-oriented requesting systems, leveraging optimization techniques to automate planning and
operations. The authors provided an early modelization of the problem of tasking heterogeneous satellites,
sometimes with multiple payloads onboard, using a constraints-based approach. They applied a stochastic greedy
search algorithm to solve it with the intent to streamline NASA’s Earth imaging operations. In the context of the
DEIMOS-2 mission, ESA/ESTEC built a tool to generate feasible acquisition sequences [24]. The tool consisted of
a mission timelines generator, responsible for analyzing the orbital geometry, finding observation opportunities from
a set of user-requested AOIs and building optimized schedules satisfying the constraints, and of a timelines
refinement module “re-playing” best-performing timelines with higher fidelity simulation. Generation of feasible
schedules follows a greedy strategy, and schedule optimization is performed by means of a genetic algorithm, as
described by Globus et al. [5]. As part of their research, Cho et al. [10,17] built a user request - visibility time
window generator tool, taking in a target location and some constellation parameters as inputs, identifying
opportunities and eventually returning schedules and associated metrics for each satellite. Scheduling strategy relied
on a MILP formulation, including energy and data capacity constraints, or some heterogeneous properties of
satellites. Earth observation missions of Airbus Defence and Space (SPOT, Pleiades and Pleiades Neo [25]) have
been supported by multiple planning and scheduling techniques over the different generations of spacecraft.
Constraints programming and local search methods have been investigated [11]. Operators at CNES and ONERA
then discussed on-board decision making capabilities to handle cloud detection, leveraging an additional onboard
sensor [26]. Finally, some more recent work contemplated the usage of modern reinforcement learning modeling and
deep neural networks to obtain action policies for planning purposes [20]. Bianchessi et al. [27] described the
constructive deterministic planning and scheduling algorithm for the first generation of the COSMO-SkyMed SAR
constellation. This algorithm was capable of handling multiple horizons, taking into account capture and ground
segment opportunities, quotas per customer, requesting deadlines, payload operational profiles and data storage
constraints, while required to run under a given time threshold. The implementation constraints led to a sequential
decision sequence strategy allowing back-tracking. Terra Bella developed automated scheduling tooling for their
constellation, allowing operator interaction [9]. Optimal scheduling relied on a MILP approach, enhanced with
dynamic programming heuristic to better balance competing objectives of data collection and downlinking. Capella
Space relied on a batch-optimized task scheduling formulation for their constellation of SAR satellites [28]. Planet
Labs also addressed scheduling of its Dove cubesat fleet by dichotomizing data collection and downlinking [29].
They split the problem into two sequential parts, first solving the ground contact selection problem using a series of
MILP, before providing the solution as an input to the imaging allocation problem, solved using a grid optimization
algorithm.

While interoperable interfaces of automated mission planning systems are usually still “defined on a per-mission
basis” [22], Loft Orbital’s MCS, Cockpit, aims at automating mission planning and operations of heterogeneous
space infrastructure at scale.

2.3 Cockpit
2.3.1 Overview

Cockpit is Loft Orbital’s MCS. It is built in order to reduce the complexity of spacecraft operations, while
providing high controllability and monitoring capabilities to its end-users:

- It is designed for full automation of operations, limiting operator involvement to mere monitoring or
off-nominal interventions, thus allowing Loft’s fleet to scale up.

- It is leveraging a microservice architecture [30], structuring a collection of loosely coupled, independently
deployable services interacting with each other.

- It is cloud-based. End-users are able to interact with Cockpit either programmatically, via its API, or
interactively, via its GUI exposing a collection of views, mapping API calls.

- Its mission management, requesting and scheduling services are dedicated to autonomously run the
planning process.
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2.3.2 Abstraction Approach
Loft’s space infrastructure is meant to support a broad range of applications: it is thus built upon a stack of

heterogeneous systems — satellites buses from multiple space systems vendors, hosting a multiplicity of payloads of
various kinds, in combination with ground sites potentially from multiple ground segment networks. This is why
Cockpit implements space and ground segment abstractions to expose a universal set of interfaces and help unify
heterogeneous systems.

For mission planning in particular, abstractions may also promote tractability of the scheduling problem. Cockpit’s
mission management, requesting and scheduling services model simple requesting concepts that help describe the
problem constraints and objectives, and simple, granular tasking concepts to translate derived opportunities into
operational plans that may be optimized. Section 3 describes some of the key aspects of the requesting and
scheduling concepts and of schedule generation and schedule optimization mechanisms in Cockpit.

Additionally, these core abstractions, used in combination with mission-specific configurations and/or resolvers,
also largely promote code scalability and maintainability.

Agreed-upon definitions and semantics are an important part of the standardization and democratization process
for automated planning and scheduling [22]. By fulfilling criteria mentioned in the CCSDS green book and applying
them operationally and successfully to a fleet of satellites providing a various range of applications, Loft Orbital:

- shows its compliance and agreement with those suggested standardized concepts,
- suggests one way to implement them for further automation and scalability,
- and demonstrates its applicability to operating a constellation of heterogeneous spacecraft, eventually

enabling space infrastructure as a service.

3. Automated Planning and Scheduling in Cockpit

3.1 Overview
Mission management, requesting, scheduling services form a subset of microservices in Cockpit dedicated to

mission planning and scheduling.
These are working in tight collaboration with other services of Cockpit, including:

- flight dynamics services, providing orbital geometry data — enabling the use of geospatial constraints as
part of requests —, or presenting maneuvering plans for constellation geometry management or collision
avoidance,

- simulation services, providing system-level data for safe and proper resource allocation,
- a weather forecast service, enabling the use of cloud coverage constraints as part of requests.

Cockpit services are essentially federated by GraphQL APIs [2,31]. Because of this kind of heavy interconnection,
a graph data structure is particularly relevant. Section 3.2.2 presents requesting interfaces in more detail.

3.2 Requesting
Requesting is the primary mechanism that end-users leverage to task their on-orbit assets. Cockpit’s requesting

system typically implements goal-based planning, utilizing objective-oriented requests, as opposed to activity-based
planning. In goal-based planning, an objective (rather than a predefined activity) is given as input to the planning
system, which is then left to come up with defining activities to achieve an objective [22].

3.2.1 Requesting Concepts
3.2.1.1 Requests

Requests in Cockpit are thus based on a constraint-based formulation, which can be grouped into the following
categories: what, where, when, and how.

- What defines the targeted operational asset. In Loft Orbital’s case, it can be of different kinds: a physical
payload (e.g., a thermal infrared imager), a “virtual” one (e.g., an algorithm running on onboard hardware),
or a “swarm” of several identical payloads to be orchestrated, potentially across multiple satellites.
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- Where defines geospatial constraints: a certain ground target, or a set of AOIs.
- When defines temporal constraints: around a specific instant, or within a given time interval, and/or a range

of local times.
- How can be different additional constraints placed on top: acceptable ranges of Sun elevation, off-nadir

angle, forecasted cloud coverage, …
This formulation of these request constraints is agnostic to the target asset, following Cockpit’s abstraction

approach. Additionally, these constraints may always be completed by asset-specific settings, provided via
unstructured interfaces and/or attached files, predicating this asset’s concept of operations (e.g., exposure time
settings for an imager, parameters for an algorithm and/or a script to be uplinked, etc.).

Some examples of natural language equivalents of requests could then be:
- Take a picture using My Thermal Infrared Imager over Dubai sometime around March 10th, 2023, only

during daytime, if the expected cloud coverage is less than 20%, using given exposure time and gain.
- Activate My Processing Payload whenever flying over metropolitan France, using the attached file.
- Collect RF samples using My SDR Swarm over California either on Tuesday or on Friday, only within an

elevation angle greater than 40 degrees.
- etc.

End-users can also assign a priority level to their request, which will be leveraged for global deconfliction. In
certain use cases, priorities can also be assigned on a per-AOI basis within a single request, to prioritize the coverage
of a certain area over other ones.

3.2.1.2 Operational Scenarios
Once a request is submitted to Cockpit’s requesting system, leveraging interfaces described in the following

section 3.2.2, it is analyzed and processed as presented in 3.2.3, in order to identify feasible and safe operational
scenarios according to simulation (section 3.4), and falling under SLAs (section 3.5).

These abstractions are the basis of the planning and orchestration to satisfy the associated request. In the case of
swarms, the execution of a given request may be fragmented and dispatched onto multiple satellites (as exemplified
in the third example above). Naturally, only feasible and safe operational scenarios are exposed, so that users cannot
interfere with each other (e.g., for missions deployed on the same satellite, or generally speaking, competing for
shared resources).

Operational scenarios returned to the user may be ranked using different metrics. Exposing multiple options
balancing request input (e.g., time to completion versus mean cloud coverage, mean off-nadir angle versus mean
Sun elevation angle, …) lets the user explore Pareto fronts, as illustrated by figure 2, and decide which constraint is
paramount. This allows to increase flexibility in scheduling and to keep the system generally agnostic to selection
criteria.

Fig. 2. Pareto front visualization for operational scenarios.

While the next paragraph focuses on interfaces for submitting and monitoring requests, their processing and the
generation of operational scenarios is presented in greater detail in the following sections.
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3.2.2 Requesting Interfaces
Cockpit exposes two types of interfaces: APIs, for programmatic access or machine-to-machine communication,

and a GUI providing a set of views sitting on top of API-exposed features.

3.2.2.1 Programmatic Interface
Cockpit services, including mission management services, expose GraphQL APIs [31]. Interactions with the

requesting API can be turned into native Python, leveraging a Python software development kit (SDK) developed by
Loft. Figure 3 presents an example snippet of code for request submission via the API, leveraging the Python SDK.
The provided request example follows the first natural language instance from section 3.2.1.1.

from cockpit.asset import Payload
from cockpit.mission import Request

# Create request
request = Request.create(

target=Request.Target(
type=Request.Target.Type.Payload,
destination=Payload.get(name="My Thermal Infrared Imager")

),
settings=Request.Settings(

target_settings={"exposure_time": 1000, "gain": 4}, # Payload-specific settings
),
constraints=Request.Constraints(

spatial=Request.Constraints.Spatial(
type=Request.Constraints.Spatial.Type.Point,
set="SRID=4326;POINT Z (55.2962 25.2770 0.0)", # Spatial constraint: over Dubai

),
temporal=Request.Constraints.Temporal(

type=Request.Constraints.Temporal.Type.NearInstant,
set="2023-03-10T00:00:00Z", # Temporal constraint: around specific instant

),
additional=Request.Constraints.Additional(

sun_elevation_angular_range=(0.0, 90.0), # Sun elevation constraint: daylight
cloud_coverage_range=(0.0, 20.0), # Cloud coverage constraint: less than 20%

),
),
comments="Collecting thermal infrared data over Dubai.",

)

# Submit request for processing
await request.process()

# Select and confirm first available operational scenario
await request.confirm(request.operational_scenarios.first())

Fig. 3. Example snippet of code for request submission via Cockpit’s API, leveraging a Python SDK mapping
GraphQL API calls to native Python.

3.2.2.2 Graphical Interface
The Cockpit GUI (“web app”) displays a collection of views that can be used to perform many of the same

operations which are available via the API. It is designed for both kinds of end-users: customers as well as
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SatDevOps users, with varying degrees of access privileges, so that high-level requesting and fine-grained control,
respectively, can co-exist in the same application.

Submitting and monitoring requests and schedules is one of the web app’s main flows. Both generic forms and
views, allowing to specify request constraints, and asset-specific forms depending on the target being requested, are
served.

Once a request is submitted and processed, various metrics are exposed for comparison of the different proposed
operational scenarios. Requested AOIs, corresponding sensor projections and coverage distribution in terms of
sensors and satellites can then be tracked via different views, as illustrated by figure 4. As far as the user’s access
privileges allow (i.e., limited to the asset(s) they have authorization for), the schedule and tasks can be thoroughly
introspected via Gantt charts and ground track projections, as shown by figure 7.

Fig. 4. Requested AOIs and sensor projections displayed in Cockpit GUI.

3.2.3 Request Processing
3.2.3.1 Request Processing Flow

Cockpit mission management and requesting services handle the processing of requests. Processing load may be
dispatched to multiple workers if need be.

Multiple layers of analysis are performed to identify opportunities, based on different input and constraints. The
output of request processing is a set of operational scenarios from which the end-user can choose the one that best
fits their need. Request processing and scheduling essentially consists of the following high-level steps:

- Spatial and temporal constraints, along with optional additional constraints (e.g., acceptable ranges of Sun
elevation, off-nadir angle, forecasted cloud coverage, …) and asset-specific settings are evaluated to derive
time windows of visibility with the target point or AOIs, from the simulated orbital geometry and attitude
of involved satellites.

- For each window, navigation profiles, coverage and other metrics are computed, and an initial set of tasks is
derived, forming an operational scenario.

- Operational scenarios are confronted to the existing schedule for deconfliction with already committed
activities, and simulated to check for safety, ensuring that hardware constraints are respected.

- Operational scenarios are refined for optimality of the global schedule.
At various levels in the requesting and scheduling flow, policies are enforced to assess whether a given request

and/or a resulting operational scenario is acceptable from an SLA standpoint, and prune the ones that are not.
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Note that the aforementioned steps are not executed in a linear manner. Instead, the flow is more similar to a
graph. Various layers, especially when it comes to policies, simulation and/or schedule optimization (detailed in the
next sections) may be applied iteratively to check the global feasibility, safety, and optimality of the scenarios.

In this context, the need for efficient fundamental routines (namely, around numerical propagation) rapidly arises.
Cockpit mission management, requesting, scheduling and simulation services make use of the Open Space Toolkit
open-source C++ libraries [32].

Fig. 5. High-level schematic of various steps in the requesting and scheduling flow.

3.2.3.2 Request Lifecycle
Depending on the outcome of request processing, a request may either be rejected straightaway, or accepted if at

least one feasible scenario is available. In a second time, upon selection of an operational scenario and confirmation
of the request by the end-user, this scenario is reprocessed by the scheduling and simulation services. This is to
prevent any race condition from occurring; the schedule may have been altered since the first processing step, and
adding the selected scenario as-is would potentially be introducing either a conflict, or suboptimal resource
allocation. If the scenario can still be handled, the request can be confirmed.

The request is effectively scheduled once, for each of the involved satellites, their individual schedule has been
successfully translated into commands and uplinked for execution. The request can then either be deemed
completed, if onboard execution was successful, based on telemetry and feedback, or failed, in off-nominal
situations where its execution would have been unsuccessful. Nominally, a request’s end of life corresponds to the
delivery of the associated data to the end-user.

Cockpit API and GUI offer great observability into the request lifecycle. They allow to monitor statuses of
requests, introspect their associated operational scenarios, and access output data processing and delivery items.

Fig. 6. Request lifecycle, from submission to data delivery.
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3.3 Scheduling
3.3.1 Scheduling Concepts

In Cockpit, simple tasking abstractions are used as building blocks of operational scenarios and spacecraft
schedules.

3.3.1.1 Tasks
An atomic action within the satellite schedule is modeled by a task to be executed by a given target sub-system.

As such, tasks represent the allocation of a given resource — either exclusively accessed (e.g., ADCS system) or
shareable (e.g., onboard storage) —, for an estimated time span, for a given activity. In other words, tasks, placed on
“swimlanes” in the schedule, indicate business (or partial business) of the associated sub-system. Some tasks may
then be translated into a set of actual commands to be executed onboard. Tasks can be grouped into logical sets
achieving a common goal, modeling as such high-level precedence or side-effect relationships between constituting
tasks.

3.3.1.2 Sub-Schedules
Multiple tasks together form a portion of schedule, which may or may not be selected for execution eventually. In

Cockpit, those are referred to as sub-schedules. Software version control systems such as Git are built to support
non-linear development: branching allows to add commits to parallel branches to the main line of development, and
branches may then be merged onto others [33]. Cockpit’s tasking and scheduling system is inspired from this flow:
task sets can be added to a sub-schedule that is parallel to the “main” version of the spacecraft schedule, and may or
may not be merged onto it, i.e., actually selected for execution. Symmetrically, sub-schedules may be reverted from
the main schedule.

Fig. 7. Sub-schedules and tasks displayed in Cockpit GUI.

As such, sub-schedules are, for example, constitutive of operational scenarios resulting from requests. When an
operational scenario is selected for execution, the underlying sub-schedule is merged onto the main schedule, for
each of the involved spacecraft. Should the associated request be canceled, those sub-schedules would be reverted.

Besides requests, other flows, described in more detail as part of section 3.7, may trigger the generation of
sub-schedules and their merging onto the main schedule:

- either automated, e.g., downlinking and/or maintenance tasks, maneuvering tasks, etc.,
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- or manual, i.e., ad-hoc operator-induced tasking, namely during early orbit and commissioning phases, or in
case of anomalies.

3.3.2 Sub-Schedule Generation
Concepts of operations are generally consistent and predictable to some extent. As a result, repetitive patterns of

tasks can generally be identified for most activities. For instance:
- Executing a request for an imager will, in most cases, involve powering on and setting up that imager,

slewing to and/or tracking the target, taking the image, and going back to an idle state after forwarding
collected data to a processing unit.

- Ground station passes generally involve setting up communication systems while slewing to track a ground
station antenna, receiving/sending data, before returning to a nominal state for attitude and communication
systems.

- etc.
As such, it is possible to use a template-based approach to yield first-order approximation sub-schedules. Those can
be refined in a second time, while being confronted against the main schedule for potential merging:

- trying to improve optimality, by rearranging tasks,
- via simulation, checking for feasibility and safety of that schedule branch.

Those two topics are the objects of the following subsections.
Sub-schedule templates essentially define reusable, semi-dynamic skeletons of tasks. While their general

arrangement is fixed, they are parameterized by temporal input (fixing task execution times, at first-order) and/or by
any kind of additional input required to fully resolve the template into a concrete sub-schedule. This input is
generally the result of computation (e.g., outcome of request processing, ground station visibility or maneuvering
analysis), or may be manually provided by an operator in ad-hoc situations.

_adcsTrackingTaskSet: #TaskSet & {
tasks: [
{

action:   _targets.obc.actions.adcs_tracking
timeSpan: #TimeSpan & {

start:    _previousTaskSet.tasks[0].timeSpan.end
duration: 1.0 // second

}
parameters: target: _analysis.adcs_tracking.target

},
{

action:   _targets.adcs.actions.tracking
timeSpan: #TimeSpan & {

start:    _adcsTrackingTaskSet.tasks[0].timeSpan.end
duration: _analysis.adcs_tracking.duration

}
},

}

Fig. 8. Illustration of templating tasks using CUE [34].

Such templates may be conveniently written using a constraints-based configuration language such as CUE [34].
CUE is an open-source spin-off of GCL, the General Configuration Language developed by Google. One of the key
principles of CUE is that complex constraints can easily be defined by merging types and values into a single
construct. A typical field declaration in CUE represents a set of nodes to which apply a constraint acting as data
validator. Because declaration order does not matter, this encourages a clear separation of concerns between
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computation and configuration, e.g., by keeping data that needs to be computed outside of CUE and injecting it to be
mixed in. These principles proved to be particularly relevant for our application, where temporal and general input
data is generated externally and injected into a template while being validated against underlying constraints. A
practical example is provided by figure 8.

3.3.3 Schedule Optimization
Confronted to the main schedule for potential merging, first-order approximation sub-schedules generated from

templates may undergo a refinement process. Ultimately, the branch stemming from the main schedule onto which
that sub-schedule would be merged should be optimized. While development of related capabilities in Cockpit is
on-going work, various approaches seem worth considering for this purpose, which essentially consist of optimally
rearranging this branch of schedule, starting from this first-order approximation as an initial feasible solution. The
state-of-the-art presented in section 2.1 suggests that combinations of MILP formulations and heuristic approaches
are worth considering.

Fundamentally, the optimization process runs every time an operation is conducted on the main schedule, either a
sub-schedule is merged onto it, or reverted. Because of that symmetry, it is interesting to track unitary optimization
operations (rearrangements) that have been previously performed at sub-schedule level. This also promotes
observability into the optimization process.

3.4 Simulation
In order to assess feasibility, safety and optimality of the schedule, a certain degree of modelization of the

spacecraft must be considered, in order to simulate, for instance, ADCS maneuvers, power and data states, and
various subsystem states.

Simulation is required to identify the side-effects that each task would impart; typically, what is the subsystem
involved in the execution of this task, for how long it will be busy (or partially busy), and/or what percentage of the
available resources will be used. In addition, simulation must ensure that all the sub-schedules on the main schedule
are compatible with one another at the hardware level (e.g., can those two ADCS maneuvers required by those two
concurrent activities onboard be performed safely and efficiently?).

Exposed operational scenarios are guaranteed to satisfy those criteria of feasibility and safety by the simulator,
whose role is to “play” a branch of the schedule with the candidate operational scenario, and to prune it if violating
resource constraints.

3.5 Policies
Throughout the requesting and scheduling flow, policies are enforced to ensure that requests and/or resulting

operational scenarios fall under mission SLAs, agreed upon between the constellation operator, Loft Orbital, and the
payload or asset owner. Mission SLAs and thus policies can take many forms:

- Requests may be restricted to specific regions of the globe: policies must then be enforced to reject
prohibited requests (e.g., in some cases, requests over the South Atlantic Anomaly).

- Requests and operational scenarios may be subject to deadlines or lead time limitations: policies prevent
requests from being processed and/or confirmed with an operational scenario after a given deadline.

- Requests may be limited to a given number, a given amount of collected data, or a given amount of
operational time, over some rolling time period.

- etc.
Given the complexity and highly dynamic nature of the requesting and scheduling flow, and the diversity of policies,
they may be evaluated at various stages in the process.

3.6 Configuring and Resolving Abstractions
As the reader can appreciate, while abstractions can greatly help approach the requesting and scheduling problem,

some payload-, platform- and/or mission-specific considerations remain. This is the case for instance of the
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definition and processing of the asset-specific settings on a request, the proper simulation of subsystems with
intrinsic properties, the translation of their concept of operations into tasks, or any SLA considerations (policies).

This ambivalence between an abstracted core flow and specific configurations (or resolvers) is inherent to the
satellite tasking problem applied to heterogeneous space systems. Loft’s strategy is to implement abstractions and a
general-purpose request processing, scheduling and simulation flow, which is fed with configuration and used in
combination with mission-specific resolvers (e.g., sub-schedule templates described in section 3.3.2).

3.7 A Scheduling Ecosystem
As previously mentioned, the presented tasking abstractions and frameworks are not limited to supporting the

requesting flow, but rather at the basis of a scheduling ecosystem. Other flows, either automated, or manual, may
trigger the generation of sub-schedules and writing on the main schedule.

This is the case, for instance, of downlinking tasks to operate ground station contacts, scheduled in an automated
fashion. Eventually, various maintenance plans, such as maneuvers, station-keeping or collision avoidance tasks, can
be derived and automatically scheduled, with limited to none operator interaction. These sub-schedules may or may
not take precedence over any pre-existing tasks on schedule, depending on nature and priority.

In any case, manual tasking and overwriting by SatDevOps operators is always a possibility, to support any ad-hoc
activities such as commissioning phases, anomalies, or specific maneuvering. Operator-induced tasking leverages
the same ecosystem of concepts, via procedures, calling the Cockpit API and written using its Python SDK, and
wrappers around the previously described sub-schedule generation CUE framework.

3.8 Further Automation: Event-Driven Requesting
In the previous sections, requesting was presented through the prism of user-induced, imperative goal-based

planning. In this paradigm, requesting is initiated by an end-user, who must be intentional about formulating and
submitting a request at a given time, and who must manually define the underlying goal through constraints. While
the presented abstractions and interfaces largely facilitate this process and enable the automated and optimized
scheduling of resources, the end-user is still involved in the decision process, assessing the proposed operational
scenarios and eventually selecting one of them for execution.

Cockpit mission management services implement supplemental abstractions to further streamline this flow and set
up event-driven requesting. Request pipelines can be created to autonomously handle the constraints definition,
request submission and operational scenario selection on behalf of the user. An external event source may trigger a
pipeline resolver that will autonomously populate constraints and submit a request for processing. In a second time,
once the request is processed, another resolver will rank operational scenarios and pick the most relevant one
according to heuristics defined as part of the pipeline. For example, a pipeline could be defined with a resolver
deriving events such as natural disasters (e.g., wildfires) from news websites, social media and/or various APIs, and
autonomously submit and confirm requests.

This paradigm may be used to further increase data collection autonomy and reduce latency, by providing an
end-to-end collection plan with no human decision-maker in the loop.

4. Conclusion

Automating the planning and scheduling of operations for a heterogeneous spacecraft fleet such as Loft Orbital’s
poses some unprecedented challenges. Loft’s infrastructure aims at supporting various missions, either rideshare or
dedicated ones, hosting a diversity of physical or “virtual” payloads, which generally compete for onboard
resources. While existing mission planning and control systems have been addressing some of these challenges, Loft
Orbital’s case calls for a different kind of answer. Cockpit, Loft’s fully-automated, web-based MCS, approaches the
heterogeneous satellite tasking problem by embracing abstractions to simplify requesting of diverse data collections
and to promote the tractability of the resulting resource allocation and schedule optimization problem.
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Building upon fundamental principles from the CCSDS standard, Cockpit promotes a mission-agnostic approach
to planning and scheduling and lays the foundations of a rationalized space infrastructure as a service, by eventually
enabling end-to-end automated data collection planning for a multiplicity of space applications.

As the infrastructure grows and as new ways of interacting with this infrastructure emerge, additional questions
arise and use cases appear. Some of them may challenge the use of fully centralized mission planning instances and
bring into question what the right balance between on-board and on-ground decision making capabilities should be.
This topic is part of ongoing work at Loft Orbital as both ground systems and onboard interfaces continuously
evolve to fit the needs of end-users. Finally, for Loft Orbital, the need for scalability exceeds mission planning and
operations; mission analysis and design phases would also greatly benefit from automation and abstraction. By
leveraging common tools — with varying degrees of modeling fidelities —, rationalization and simplification could
be brought into mission development phases, eventually further reducing access time to Loft’s space infrastructure
for end-users.
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