La Téchnologie Neuromorphique pour le Spatial

Gregor Lenz, UTIAS, April 5th 2024

Brains and neural systems

Human

Brain = 86 billion neurons

Brains and neural systems

Neural computation

Neuromorphic hardware

- Spiking communication
- Asynchronous
- In-memory computing

Neuromorphic hardware

Company/Lab	Chip type	#Neurons/ synapses	On-chip learning	Power	Software	Applications
ROLLS (16)	Mixed-signal	256/64 K	Υ	~5 mW	Custom python	Research
DYNAP-SE (15)	Mixed-signal	4 K/4 M	N	~5 mW	Custom python	Research
NeuroGrid (BrainDrop)/ Stanford (<i>29</i>)	Mixed-signal	1 M/billions	N	~3 W	NEF	Real-time SNN emulation
Innatera	Mixed-signal	256/64 K	N	~1 mW	PyTorch	Smart sensing
BrainScaleS 1/ Universität Heidelberg (<i>17</i>)	Mixed-signal	~180,000/40 M (in 352 chips)	N	~300 W	BrainScaleS OS	Accelerated SNN emulation; HPC
BrainScaleS 2/ Universität Heidelberg (30, 31)	Mixed-signal	512/~130,000	Y	~1 W	BrainScaleS OS	Edge processing, robotics
TrueNorth/IBM (9)	Digital	1 M/256 M (in 4 K cores)	N	~0.3 W	Custom	DNN acceleration
SpiNNaker/University of Manchester (13)	Digital	1B/10 kilobytes (in 64 K x 18 ARM cores)	Y	~kW	PyNN, NEST	Real-time simulation of SNN; HPC
Loihi/Intel Labs (12)	Digital	~128,000/128 M per chip (scalable)	Υ	~1 W	Lava	Research chip
Dynap-CNN/ SynSense	Digital	~327,000/278,000	N	~5 mW	Rockpool, PyTorch	Smart sensing
BrainChip/Akida	Digital	Configurable, 8-Mb SRAM	Υ	~30 mW	TensorFlow, CNN → SNN	Smart sensing, one-shot learning
Tianjic/Tsinghua University (34)	Digital	40,000/10 M (on 156 cores)	N	~1 W	Custom	ANN/SNN acceleration

Spiking Neural Networks

- Subclass of Recurrent Neural Networks (RNN)
- Binary, highly sparse activations
- Based on deep learning stack

Spiking Neural Networks

- Subclass of Recurrent Neural Networks (RNN)
- Binary, highly sparse activations
- Based on deep learning stack

Event cameras

Event cameras

The Neuromorphic System

Optical Vision Sensor Event-based cameras

ML Model
Spiking Neural
Networks

Al accelerator Neuromorphic processors

100x efficiency gain Unlocks new capabilities

The Neuromorphic System

Optical Vision Sensor Event-based cameras

Al accelerator Neuromorphic processors

100x efficiency gain Unlocks new capabilities

Networks

Space Situational Awareness

Space Situational Awareness

Ship Detection on Neuromorphic Hardware

- Static power <1W
- Dynamic power <1W
- Energy consumed <50 mJ/frame

open-neuromorphic.org

Home

Workshops

Blog About ∨

Q

Join Discord

Neuromorphic Computing and Engineering Community

- Educational content to get you started in the neuromorphic world.
- Events about neuromorphic research and software, with contributions from both academia and industry.
- A curated list of open source <u>software frameworks</u> \(\mathcal{L}\) to make it easier to find the **tool you need**.
- A platform for your code 2. If you wish to create a new repository or migrate your existing code to ONM, please get in touch with us.

Ways to Get Involved

Content

Contribute to website content, blogs, newsletters, and technical guides.

Code

Contribute to ONM projects or host your own project with ONM.

Workshop

Participate in workshops to share your expertise and insights.

Discord

Join our welcoming and collaborative community on Discord.

Next Workshop

Spyx Hackathon: Speeding up Neuromorphic Computing

- Kade Heckel
- **2**023, December 13
- **6**:00 8:00 CEST

Explore the power of Spyx in a hands-on hackathon session and dive into the world of neuromorphic frameworks with Kade Heckel.

neurobus.space

Gregor Lenz CTO & Co-Founder

open-neuromorphic.org